سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Inter-comparison of single-sensor and merged multi-sensor ocean color chlorophyll-a products in the shallow turbid waters - case study: Persian Gulf

Publish Year: 1401
Type: Journal paper
Language: English
View: 156

This Paper With 10 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_IJCOE-7-2_001

Index date: 13 June 2023

Inter-comparison of single-sensor and merged multi-sensor ocean color chlorophyll-a products in the shallow turbid waters - case study: Persian Gulf abstract

Ocean color satellite sensors provide the only long-term Essential Climate Variable (ECV) globally that targets Chlorophyll-a concentrations (Chl-a) as the most important biological factor in the oceans. It is difficult to develop the long-term and consistent ocean color time-series for climate studies due to the differences in characteristics, atmospheric correction, Chl-a retrieval algorithms, and limited lifespans of individual satellite sensors. Therefore, the merged multi-sensor ocean color datasets were developed by merging data from different satellite sensor products. The performance of the commonly used single-sensor and multi-sensor merged ocean color datasets is a challenging issue over highly turbid coastal waters and dusty atmospheric conditions. In this study, we compared the common single-sensor [Sea-viewing Wide Field-ofview Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS), Visible Imager Radiometer (VIIRS), and Sentinel-3 Ocean and Land Colour Instrument (OLCI)], and merged multi-sensor [Ocean Colour Climate Change Initiative (OC-CCI), and GlobColour weighted average (GC-AVW) and Garver-SiegelMaritorena (GC-GSM)] Chl-a datasets over the Persian Gulf, known as optically complex and highly turbid water bodies in a dusty atmospheric condition. The results indicate that the OC-CCI dataset provides more spatial and temporal coverages than the other datasets. Temporal consistency between single-sensor and merged datasets was made in two different timespans during the common period of sensors and during the continuous lifespan intersection between individual two-paired of datasets. The statistical metrics were calculated to show the temporal consistency between Chl-a datasets during the common and continuous time periods. Correlation between OC-CCI and the other datasets showed that the relationships between datasets did not change significantly during the proposed time periods. Further, it was indicated that the OC-CCI product is more constant than the other single-sensor and merged products. It was shown that OC-CCI datasets were more consistent with MERIS and GC-GSM datasets, and SeaWiFS and GC-AVW were not significantly correlated to the other datasets. The results revealed that the single sensor products that use POLYMER atmospheric correction algorithm (e.g. MERIS), and merged multi-sensor product that performs the GSM blending algorithms (e.g. GC-GSM) are more consistent and stable than the other products over the study area.

Inter-comparison of single-sensor and merged multi-sensor ocean color chlorophyll-a products in the shallow turbid waters - case study: Persian Gulf Keywords:

Inter-comparison of single-sensor and merged multi-sensor ocean color chlorophyll-a products in the shallow turbid waters - case study: Persian Gulf authors

Masoud Moradi

Iranian National Institute of Oceanography and Atmospheric Science

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Platt T, Stuart (۲۰۰۸). Why Ocean Colour? The Societal Benefits ...
Longhurst A, Sathyendranath S, Platt T, Caverhill C. (۱۹۹۵). An ...
Muller-Karger FE, Kavanaugh MT, Montes E, Balch WM, Breitbart M, ...
Sathyendranath S, Brewin RJ, Brockmann C, Brotas V, Calton B, ...
Beaulieu C, Henson SA, Sarmiento JL, Dunne JP, Doney SC, ...
Racault MF, Le Quéré C, Buitenhuis E, Sathyendranath S, Platt ...
Steinmetz F, Deschamps P-Y, Ramon D. (۲۰۱۱). Atmospheric correction in ...
Garnesson P, Mangin A, D’Andon OF, Demaria J, Bretagnon M. ...
Hu C, Lee Z, Franz B. (۲۰۱۲). Chlorophyll a algorithms ...
Gohin F, Druon JN, Lampert L. (۲۰۰۲). A five channel ...
Morel A, Huot Y, Gentili B, Werdell PJ, Hooker SB, ...
Brewin RJW, Sathyendranath S, Müller D, Brockmann C, Deschamps PY, ...
Seegers BN, Stumpf RP, Schaeffer BA, Loftin KA, Werdell PJ. ...
Campbell JW. (۱۹۹۵). The lognormal distribution as a model for ...
Gregg WW, Casey NW, McClain CR. (۲۰۰۵). Recent trends in ...
Jolliff JK, Kindle JC, Shulman I, Penta B, Friedrichs MAM, ...
Saba VS, Friedrichs MAM, Antoine D, Armstrong RA, Asanuma I, ...
Djavidnia S, Mélin F, (۲۰۱۰). Comparison of global ocean colour ...
Werdell PJ, Franz BA, Bailey SW, Harding, Jr. LW, Feldman ...
Taylor KE. (۲۰۰۱). Summarizing multiple aspects of model performance in ...
Belo Couto A, Brotas V, Mélin F, Groom S, Sathyendranath ...
Moradi M. (۲۰۲۱). Evaluation of merged multi-sensor ocean-color chlorophyll products ...
Al Shehhi MR, Gherboudj I, Ghedira H. (۲۰۱۴). An overview ...
Moradi M, Kabiri K. (۲۰۱۲). Red tide detection in the ...
Richlen ML, Morton SL, Jamali EA, Rajan A, Anderson DM. ...
Moradi M. (۲۰۲۰). Trend analysis and variations of sea surface ...
Moradi M, Moradi N. (۲۰۲۱). Correlation between concentrations of chlorophyll-a ...
نمایش کامل مراجع