سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Predicting the Top and Bottom Prices of Bitcoin Using Ensemble Machine Learning

Publish Year: 1402
Type: Journal paper
Language: English
View: 232

This Paper With 19 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_AMFA-8-3_010

Index date: 10 July 2023

Predicting the Top and Bottom Prices of Bitcoin Using Ensemble Machine Learning abstract

The purpose of the present study is to use the ensemble learning model to combine the predictions of Random Forest (RF), Long-Short Term Memory (LSTM), and Recurrent Neural Network (RNN) models for the Top and Bottom Prices of Bitcoin. To this aim, in the first stage, Bitcoin's top and bottom prices are predicted using three machine learning models. In the second stage, the outputs of the models are presented as feature variables to the Extreme Gradient Boosting (Xgboost) and Light Gradient Boosting Machine (LightGBM) models to predict the price tops and bottoms. Then, in the third stage, the outputs of the second stage are combined through the voting ensemble classifier pattern to predict the next top and bottom prices. The data of top and bottom Bitcoin prices in the 1-hour time frame from 1/1/2018 to the end of 6/30/2022 are used as target variables and 31 technical analysis indicators as feature variables for the three models in the first stage. 70% of the data is regarded as learning data, and the remaining 30% is considered for the second and third stages. In the second phase, 50% of the data is considered for learning the output of the previous stage and 50% for the test data. Finally, the prediction values are evaluated with real data for the three models and the proposed ensemble learning model. The results reveal the improvement of the performance, precision, and accuracy of the ensemble model compared to weak learning models.

Predicting the Top and Bottom Prices of Bitcoin Using Ensemble Machine Learning Keywords:

Predicting the Top and Bottom Prices of Bitcoin Using Ensemble Machine Learning authors

Emad Koosha

Financial engineering Ph.D. Candidate, Department of Financial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Mohsen Seighaly

Assistant Professor, Department of Financial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Ebrahim Abbasi

Associate Professor, Department of management, faculty of social sciences and economics, ALzahra University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Ampomah, E.K., Qin, Z., Nyame, G., Evaluation of Tree-Based Ensemble ...
Ampomah, E., Qin, Z., Nyame, G., Evaluation of Tree-Based Ensemble ...
Bashiri, Paryab, Bitcoin price prediction using machine learning algorithms, Applied ...
Basak, S., Kar, S., Saha, S., Khaidem, L., Dey, S., ...
Dennys C.A. Mallqui, Ricardo A.S. Fernandes, Predicting the direction, maximum, ...
Divya A., Shabana C., Balamurugan A., A complete empirical ensemble ...
Faghihi Nezhad, M., Minaei Bidgoli, B. Development of an ensemble ...
Gupta, A., Nain, H., Bitcoin Price Prediction Using Time Series ...
Jiang X., Bitcoin Price Prediction Based on Deep Learning Methods, ...
Kyung K. Y., Sang W.Y., Daehan W., Prediction of stock ...
Li, Y., Pan, Y. A novel ensemble deep learning model ...
Moshari M., Didekhani H., Khalili Damghani, K. Abbasi, E, Designing ...
Nakamoto, S, Bitcoin: A peer-to-peer electronic cash system. ۲۰۰۸, Decentralized Business ...
Nti, I.K., Adekoya, A.F. Weyori, B.A. A comprehensive evaluation of ...
Yue Y., Yang W., Peikun W., Xu J., Stock Price Prediction Based ...
Poordavoodi, A., Reza, M., Haj, H., Rahmani, A. M., Izadikhah, ...
Ta, V. D., Liu, C. M., Tadesse, D. A. Portfolio ...
Livieris, I. E., Pintelas, E., Stavroyiannis, S., Pintelas, P., Ensemble ...
Chowdhury, R., Rahman, M. A., Rahman, M. S., Mahdy, M. ...
Manchanda, H., Aggarwal, S., Forecasting Cryptocurrency Time Series Using Adaboost-Based ...
Ji, S., Kim, J., Im, H., A comparative study of ...
Kervan, C., Akay, F.,, Review on Bitcoin Price Prediction Using ...
Lahmiri, S., Bekiros, S., Cryptocurrency Forecasting with Deep Learning Chaotic ...
Ye Z, Wu Y, Chen H, Pan Y, Jiang Q. ...
Almeida Borges, T.,, Ferreira Neves, R.,, Ensemble of machine learning ...
Kumar Nagula, P., Alexakis, C., A new hybrid machine learning ...
Zanjirdar, M., Kasbi, P., Madahi, Z., Investigating the effect of ...
نمایش کامل مراجع