Applying a Cutting Edge Solution to Predict Breakthrough Time of Water Coning in Naturally Fractured Reservoirs
Publish place: The 14th Conference of chemical Engineering
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,249
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
NICEC14_742
Index date: 23 November 2012
Applying a Cutting Edge Solution to Predict Breakthrough Time of Water Coning in Naturally Fractured Reservoirs abstract
Water coning caused water flow into the wellbore from below the perforations and causes several problems in wellbore and surface facilities. For solve these problems, we must know breakthrough time of water in wellbore. In this paper, potential application of feed-forward Artificial Neural network (ANN) is proposed to predict breakthrough time of water coning. The BP is implemented here to decide on initial weights of the parameters used in neural network. The developed BP-ANN model is examined by using new experimental data. Results obtained from the developed BP-ANN model were compared with the experimental water coning data. The average relative absolute deviation between the model predictions and the experimental data was found to be less than 9%. Results from this study indicate that application of BP-ANN in breakthrough time prediction which can lead to design of more efficient production scenarios.
Applying a Cutting Edge Solution to Predict Breakthrough Time of Water Coning in Naturally Fractured Reservoirs Keywords:
Applying a Cutting Edge Solution to Predict Breakthrough Time of Water Coning in Naturally Fractured Reservoirs authors
Mohammad Ali Ahmadi
petroleum University of Technology
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :