Robust Adaptive H∞ Controller Based on Hybrid Genetic Wavelet Kernel Principal Component for Nonlinear Uncertain Systems
Publish place: majlesi Journal of Electrical Engineering، Vol: 9، Issue: 4
Publish Year: 1394
Type: Journal paper
Language: English
View: 155
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_MJEE-9-4_002
Index date: 3 September 2023
Robust Adaptive H∞ Controller Based on Hybrid Genetic Wavelet Kernel Principal Component for Nonlinear Uncertain Systems abstract
In this paper, two adaptive H∞ control schemes based on a genetic wavelet kernel support vector machine (SVM) and a hybrid genetic wavelet kernel SVM is presented for nonlinear uncertain systems. In these methods, wavelet kernel SVM is employed to establish the adaptive controller and an on-line learning rule for the weighting vector and bias is derived. The H∞ control technique is combined with adaptive control algorithm and wavelet support vector machine to achieve the desired attenuation on the tracking error caused by wavelet-SVM approximation error and external disturbances. The most important feature of the proposed control strategy is its inherent robustness and its ability to handle the nonlinear behaviour of the system. The results of simulation show this SVM online algorithm controller is very effective and the SVM controller can achieve a satisfactory performance
Robust Adaptive H∞ Controller Based on Hybrid Genetic Wavelet Kernel Principal Component for Nonlinear Uncertain Systems Keywords:
Genetic Algorithm (GA) , en , Wavelet Support Vector Machines , Hybrid Wavelet and RBF Support Vector Machines , Adaptive control , H∞ Control , Nonlinear Uncertain System
Robust Adaptive H∞ Controller Based on Hybrid Genetic Wavelet Kernel Principal Component for Nonlinear Uncertain Systems authors
Bahar Ahmadi
university of tabriz
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :