An evaluation of genetic algorithm method compared to geostatistical and neural network methods to estimate saturated soil hydraulic conductivity using soil texture
Publish place: Iran Agricultural Research، Vol: 36، Issue: 1
Publish Year: 1396
نوع سند: مقاله ژورنالی
زبان: English
View: 118
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IAR-36-1_011
تاریخ نمایه سازی: 13 شهریور 1402
Abstract:
ABSTRACT-Determining hydraulic conductivity of soil is difficult, expensive, and time-consuming. In this study, Algorithm Genetic and geostatistical analysis and Neural Networks method are used to estimate soil saturated hydraulic conductivity using the properties of particle size distribution. The data were gathered from ۱۳۴soil profiles from soil and lander form studies of the Ardabil Agricultural Organization. Results showed that Or denary cokriging has the best fit for the geostatistical methods. The best-fitted vario gram was the exponential model with anugget effect of ۰ cm day-۱ and sill of ۱۵۶ cm day-۱ which is the strength of the spatial structure and full effect of the structural components on the vario gram model for the region; also, in the or denary cokriging method, an accurate estimate was obtained using R۲ = ۰.۹۳ and RMSE = ۳.۲۱.Multilayer perceptron (MLP) network used the Levenberg- Marquardt (trainlm) algorithm with are gression coefficient (R۲) of ۰.۹۹۷ and Root Mean Square Error (RMSE) of ۱.۲۲ to estimate the hydraulic conductivity of saturated soil. For GA model, parameters of root mean square error (RMSE) cm day-۱ and the coefficient of determination (R۲) were determined as ۱.۳۵ and ۰.۹۲۶, respectively. Performance evaluation of the models showed that the Neural Networks model compared with geostatistical analysis and genetic algorithm was able to predict soil hydraulic conductivity with high and more accuracy and results of this method was closer to the measurement results.
Keywords:
Keywords: , Geostatistics , Saturated hydraulic conductivity Neural Network Methods (ANN) Cokriging , Genetic Algorithm
Authors
Y. Hosseini
Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, I. R. Iran
R. Sedghi
Sama Technical and Vocatinal Training College, Islamic Azad University, Ardabil Branch, Ardabil, I. R. Iran
S. Bairami
Sama Technical and Vocatinal Training College, Islamic Azad University, Ardabil Branch, Ardabil, I. R. Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :