Research and Development Investment and Productivity Growth in Firms with Different Levels of Technology
Publish place: Iranian Economic Review Journal، Vol: 23، Issue: 4
Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 130
This Paper With 24 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IER-23-4_001
تاریخ نمایه سازی: 21 مهر 1402
Abstract:
I n the modern competitive world, Research and Development (R&D) and its overflowing technologies are the main basis of innovation, which in turn, can be determined as an important source of economic growth. Investing in research activities can help firms with different technological levels, especially high-tech industries to improve their productivity. This paper aims to analyze the role of R&D expenditures in total factor productivity (TFP) growth in Iran’s industry sector. For this purpose, data from industries with different levels of technology (high, medium and low) over the period ۱۹۹۴-۲۰۱۰ is used. Results show that R&D expenditures in high-tech and then in medium/high-tech industries have the most positive and significant effect on TFP growth. In addition, among high-tech industries, R&D expenditures have the greatest impact on the productivity growth in drug and chemical industries related to medicine (Code ۲۴۲۳) which has experienced significant progress in recent years.
Keywords:
Keywords: Total Factor Productivity , Research and Development , High-tech Industry , Panel Data Econometrics. JEL Classification: O۱۰ , O۳۰ , O۴۰ , B۲۳
Authors
Leili Soltanisehat
Department of Engineering Management and Systems Engineering, Old Dominion University, VA, USA .
Reza Alizadeh
Systems Realization Laboratory @OU, School of Industrial and Systems Engineer-ing, University of Oklahoma, OK, USA.
Nader Mehregan
Faculty of Economics and Social Sciences, Bu-Ali Sina University, Hamedan, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :