سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Data Fusion and Machine Learning Algorithms for Drought Forecasting Using Satellite Data

Publish Year: 1399
Type: Journal paper
Language: English
View: 136

This Paper With 16 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JESPHYS-46-4_018

Index date: 18 October 2023

Data Fusion and Machine Learning Algorithms for Drought Forecasting Using Satellite Data abstract

Drought is one of the natural disasters in the world, which is associated with various global factors, most of which can be observed using remote sensing techniques. One of the factors affecting agricultural drought is the vegetation associated with other drought-related factors. These parameters have a complicated relationship with each other, so machine learning algorithms can be used to predict better and model this phenomenon. Factors considered in this study include vegetation as the most critical factor, Land Surface Temperature (LST), Evapo Transpiration (ET), snow cover, rainfall, soil moisture these are derived from the active and passive sensors of satellite sensors as the products of LST, snow cover and vegetation using images of products of the MODIS sensor, rainfall using the images of the TRMM satellite, and soil moisture using the images of the SMOS satellite during a period from June 2010 to the end of 2018 for the central region of Iran. After that, primary processing was performed on these images. The vegetation index (NDVI) is modelled and predicted using an Artificial Neural Network algorithm (ANN), Support Vector Regression (SVR), Decision Tree (DT), Random Forest (RF) for monthly periods. By using these methods we have been able to present a model with desirable accuracy. The ANN approach has provided higher accuracy than the other three algorithms. Also, an average accuracy with RMSE=0.0385 and =0.8740 was achieved.

Data Fusion and Machine Learning Algorithms for Drought Forecasting Using Satellite Data Keywords:

Data Fusion and Machine Learning Algorithms for Drought Forecasting Using Satellite Data authors

Ramin Mokhtari

M.Sc. Graduated, Remote Sensing Division, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

Mehdi Akhoondzadeh

Assistant Professor, Remote Sensing Division, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Ahmed, N.K., Atiya, A.F. El Gayar, N. and El-Shishiny, H., ...
Alizadeh, M.R. and Nikoo, M.R., ۲۰۱۸, A fusion-based methodology for ...
Bai, J., Cui, Q., Chen, D., Yu, H., Mao, X., ...
Barua, S., Ng, A.W.M. and Perera, B.J.C., ۲۰۱۲, Artificial neural ...
Belayneh, A., Adamowski, J., Khalil, B. and Ozga-Zielinski, B., ۲۰۱۴, ...
Belayneh, A. and Adamowski, J., ۲۰۱۳, Drought forecasting using new ...
Benesty, J., Chen, J., Huang, Y. and Cohen, I., ۲۰۰۹, ...
Breiman, L., ۲۰۰۱, Random forests. Machine Learning, ۴۵(۱), ۵-۳۲ ...
Breiman, L., ۲۰۱۷, Classification and Regression Trees: Routledge ...
Chang, C.-C. and Lin, C.J., ۲۰۰۱, LIBSVM: a library for ...
Cimen, M., ۲۰۰۸, Estimation of daily suspended sediments using support ...
Cortes, C. and Vapnik, V., ۱۹۹۵, Support-vector networks. Machine Learning, ...
Daubechies, I., ۱۹۹۲, Ten Lectures on Wavelets. Vol. ۶۱: Siam ...
Duan, Z. and Bastiaanssen, W.G.M., ۲۰۱۳, First results from Version ...
Heumann, B.W., ۲۰۱۱, Satellite remote sensing of mangrove forests: Recent ...
Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Delwart, S. Cabot, F. ...
Kim, T.-W. and Valdés, J.B., ۲۰۰۳, Nonlinear model for drought ...
Kogan, F.N., ۱۹۹۵, Droughts of the late ۱۹۸۰s in the ...
Kogan, F.N., ۲۰۰۰, Contribution of remote sensing to drought early ...
Modarres, R., ۲۰۰۶, Regional precipitation climates of Iran. Journal of ...
Mokhtari Dehkordi, R. and Akhoondzadeh, M., ۲۰۲۰, Combining Neural Network ...
Nason, G.P. and von Sachs, R., ۱۹۹۹, Wavelets in time-series ...
Park, S., Im, J., Park, S. and Rhee, J., ۲۰۱۷, ...
Ramoelo, A., Majozi, N., Mathieu, R., Jovanovic, N., Nickless, A. ...
Sánchez, N., González-Zamora, Á., Piles, M. and Martínez-Fernández, J., ۲۰۱۶, ...
Szalai, S. and Szinell, C.S., ۲۰۰۰, Comparison of two drought ...
Wilhite, D.A. and Buchanan-Smith, M., ۲۰۰۵, Drought as hazard: understanding ...
Zhang, A. and Jia, G., ۲۰۱۳, Monitoring meteorological drought in ...
Zhang, H., Chen, L., Qu, Y., Zhao, G. and Guo, ...
نمایش کامل مراجع