Two-Dimensional Magnetotelluric Modeling of the Sabalan Geothermal Field, North-West Iran

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 82

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JESPHYS-46-4_003

تاریخ نمایه سازی: 26 مهر 1402

Abstract:

During ۲۰۰۷, a magnetotelluric (MT) survey in the frequency range of ۰.۰۰۲-۳۲۰ Hz was carried out on southwestern of Sabalan geothermal region (Moeil valley, Ardabil); the aim of which was modeling of the shallow and deep electrical resistivity structures related to the local geothermal reservoirs and heat system recharge at depth. Twenty eight soundings were conducted in the study area, and the collected MT data were found to be two-dimensional (۲D), based on dimensionality (skew parameter) analysis. The NNW-SSE (۳۰°W) direction was identified as the dominant electrical strike in the area. Data along a profile crossing the hot springs with seven MT stations, have been implemented for modeling and inversion. Dimensionality analysis shows that a ۲D interpretation of the data is justified, although the presumed geoelectric strike direction is not consistent over the whole profile and frequencies. MT data were analyzed and modeled using MT۲DInvMatlab inversion source codes and the finite elements (FEM) method for forward modeling. Inversion parameters as an input file and appropriate mesh blocks design are prepared before start of the modeling and inversion. MT۲DInvMatlab software includes a topography file into a forward model for terrain effects compensation in the inversion process. After setting up the model parameter, ۲D inversion of the Sabalan magnetotelluric data was performed. Smoothness–constrained least square methods with a spatially regularization parameter estimation and the ACB (Active Constraint Balancing) algorithm were employed in MT۲DInvMatlab to stabilize the model. Both apparent resistivity and phase data were used to have models with minimum misfit for TM, TE and joint TE+TM mode data. The TM mode apparent resistivity and phase are better fitted than the TE mode, as a consequence of the inductive nature of the ۲D TE response in a ۳-D geothermal field structures. However, the apparent resistivity and phase data are also well fitted in the joint inversion of TM and TE mode data. Although the TM mode data is often used for ۲-D modeling of MT data in geothermal field studies, we have shown the other two dimensional electrical resistivity models, using apparent resistivity and phase data of TM, TE and joint TE+TM mode data. These models resolved a good correlation between the features of the geothermal field and resistivity distribution at depth. The resulting models reveal the presence of a resistive cover layer (Cap-rock) underlain by an anomalous conductive layer and other geological structures such as fluid-filled faults (about ۵۰۰-۱۰۰۰ m below the ground surface). A very low resistivity (۳-۵ ohm-m) feature was found at the depths below ۲۰۰۰ m, bounded by two more resistive (۱۰۰-۵۰۰ ohm-m) features that can be interpreted as the main reservoir of the geothermal system in the area. At shallow depths, the resistivity model obtained from the MT data is consistent with the general conceptual resistivity model proposed for high-temperature geothermal systems. The deeper electrical structure was found to be more resistive (۱۰۰ ohm-m) due to the presence of metamorphic rock formations. According to this results, heat source of the geothermal structure and heat transition zone from deep sources to shallow reservoir, is predicted at ۲~۷Km at depth.

Authors

Gholam Abbas Fanaee Kheirabad

Assistant Professor, Department of Mining Engineering, Birjand University of Technology, Birjand, Iran

Behrooz Oskooi

Associate Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Ander, M.A., Gross, R. and Strangway, D.W., ۱۹۸۴, A detailed ...
  • Bahr, K., ۱۹۸۸, Interpretation of the Magnetotelluric impedance tensor: regional ...
  • Bedrosian, P., Unsworth, M., Egbert, G. and Thurber, C., ۲۰۰۴, ...
  • Berberian, M., ۱۹۸۱, Active faulting and tectonics of Iran. In: ...
  • Berktold, A., ۱۹۸۳, Electromagnetic studies in geothermal regions. Geophysics Survey, ...
  • Bertrand, E., ۲۰۱۰, Magnetotelluric imaging beneath the Taiwan orogen: An ...
  • Bogie, I., Khosrawi, K. and Talebi, B., ۲۰۰۵, Geological Results ...
  • Bogie, I., Cartwright, A.J., Khosrawi, K., Talebi, B. and Sahabi, ...
  • Brasse, H., Lezaeta, P., Rath, V., Schwalenberg, K., Soyer, W. ...
  • Bromley, C.J., Khosrawi, K. and Talebi, B., ۲۰۰۰, Geophysical Exploration ...
  • Cagniard, L., ۱۹۵۳, Basic theory of the magnetotelluric method. Geophysics, ...
  • Emami H., ۱۹۹۴, Meshkinshahr ۱; ۱۰۰, ۰۰۰ Scale Geological Map. ...
  • ENEL., ۱۹۸۳, Geothermal power development studies in Iran, General Report ...
  • Fanaee Kheirabad, G.A. and Oskooi, B., ۲۰۱۰, Magnetotelluric modeling of ...
  • Investigation of Sabalan geothermal field structure using Magnetotelluric data [مقاله کنفرانسی]
  • Fanaee Kheirabad, G.A. and Oskooi, B., ۲۰۱۱, Magnetotelluric interpretation of ...
  • Groom, R.W. and Bailey., R.C., ۱۹۸۹, Decomposition of the Magnetotelluric ...
  • Ghaedrahmati, R., Mradzadeh., A., Fathianpour., N. and Kon Lee, S., ...
  • Ghaedrahmati, R., Moradzadeh., A., Fathianpour., N., Lee, SK. and Porkhial ...
  • Hafizi, M.K., Aiobi, M. and Rahimi, A., ۲۰۰۲, The combination ...
  • Heinson, G.S., Direen, N. and Gill, R., ۲۰۰۶, Magnetotelluric evidence ...
  • Heise, W., Caldwell, T.G., Bibby, H.M. and Bannister, S.C., ۲۰۰۸, ...
  • KML, ۱۹۹۸, Sabalan geothermal project, Stage ۱, Surface exploration, final ...
  • Ledo, J., ۲۰۰۵, ۲D versus ۳D magnetotelluric data interpretation: Surveys ...
  • Lee, S.K., Kim , H,J., Song, Y. and Lee, C., ...
  • Manzella, A., ۲۰۰۴, Resistivity and heterogeneity of Earth crust in ...
  • McNeice, G.W. and A.G. Jones, ۲۰۰۱, Multisite, multifrequency tensor decomposition ...
  • Mogi, T. and Nakama, S., ۱۹۹۳, Magnetotelluric interpretation of the ...
  • Muller, A. and Haak, V., ۲۰۰۴, ۳-D modeling of the ...
  • Oskooi, B., Pedersen, L.B., Smirnov, M., Árnason, K., Eysteinsson, H. ...
  • Oskooi, B., Fanaee Kheirabad, G.A., Habibian Dehkordi, B. and Nieuwenhuis, ...
  • Oskooi, B., Takalu, M., Montahaei, M. and Rahmani, M.R., ۲۰۱۶, ...
  • Patro, B.P.K., Harinarayana, T., Sastry, R.S., Rao, M., Manoj, C., ...
  • Spichak, V. and Manzella, A., ۲۰۰۹, Electromagnetic sounding of geothermal ...
  • Swift, C.M., ۱۹۶۷, A magnetotelluric investigation of electrical conductivity anomaly ...
  • Talebi, B., ۲۰۰۶, Numerical modeling of the NW Sabalan geothermal ...
  • Talebi, B., Khosrawi, K. and Ussher, G., ۲۰۰۵, Review of ...
  • Tikhonov, A.N., ۱۹۵۰, On determining electrical characteristics of the deep ...
  • Uchida, T., Lee, T.J., Honda, M. and Andan, A., ۲۰۰۲, ...
  • Unsworth, M.J., Jones, A.G., Wei, W., Marquis, G., Gokarn, S.G., ...
  • Volpi, G., Manzella, A. and Fiordelisi, A., ۲۰۰۳, Investigation of ...
  • Wannamaker, P.E., Jiracek, G.R., Stodt, J.A., Caldwell, T.G., Gonzales, V.M., ...
  • Wannamaker, P.E., Hohmann, G. and Ward, S., ۱۹۸۴, Magnetotelluric responses ...
  • Yi, M.J., Kim, J.H. and Chung, S.H., ۲۰۰۳, Enhancing the ...
  • Yousefi, H., Noorollah, Y., Ehara, S., Itoi, R., Yousefi, A., ...
  • Zhang, P., Roberts, R.G. and Pedersen, L., ۱۹۸۷, Magnetotelluric strike ...
  • نمایش کامل مراجع