Analysis and modeling of the effect of oxygen concentration on the growth rate of bacteria

Publish Year: 1402
نوع سند: مقاله کنفرانسی
زبان: English
View: 140

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

MSHCONG05_002

تاریخ نمایه سازی: 2 آبان 1402

Abstract:

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. Bacterial growth is proliferation of bacterium into two daughter cells, in a process called binary fission. Providing no event occurs, the resulting daughter cells are genetically identical to the original cell. Hence, bacterial growth occurs. Both daughter cells from the division do not necessarily survive. However, if the surviving number exceeds unity on average, the bacterial population undergoes exponential growth. The measurement of an exponential bacterial growth curve in batch culture was traditionally a part of the training of all microbiologists; the basic means requires bacterial enumeration (cell counting) by direct and individual (microscopic, flow cytometry), direct and bulk (biomass), indirect and individual (colony counting), or indirect and bulk (most probable number, turbidity, nutrient uptake) methods. Models reconcile theory with the measurements. The response of bacteria, yeast, and mammalian and insects cells to oxidative stress is a topic that has been studied for many years. However, in most the reported studies, the oxidative stress was caused by challenging the organisms with H۲O۲ and redox-cycling drugs, but not by subjecting the cells to high concentrations of molecular oxygen. In this review we summarize available information about the effect of elevated oxygen concentrations on the physiology of microorganisms and cells at various culture conditions. In general, increased oxygen concentrations promote higher leakage of reactive oxygen species (superoxide and H۲O۲) from the respiratory chain affecting metalloenzymes and DNA that in turn cause impaired growth and elevated mutagenesis. To prevent the potential damage, the microorganisms and cells respond by activating antioxidant defenses and repair systems. This review described the factors that affect growth properties and metabolism at elevated oxygen concentrations that cells may be exposed to, in bioreactor sparged with oxygen enriched air which could affect the yield and quality of the recombinant proteins produced by high cell density schemes.

Authors

Mohadeseh Zor

Master of Bacteriology, Faculty of Veterinary Medicine, Zabol University