Fuzzy-GA Approach for Estimating Rainfall over Upper Chi-Mun Basins of Thailand
Publish Year: 1395
Type: Journal paper
Language: English
View: 116
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_JASTMO-18-6_012
Index date: 22 November 2023
Fuzzy-GA Approach for Estimating Rainfall over Upper Chi-Mun Basins of Thailand abstract
The present study examines the fuzzy sets model for computing rainfall over the Upper Chi-Mun basins in the Northeastern region of Thailand based on historical weather data from five stations’ rain gauges under the radar umbrella, temperature, relative humidity, and radar reflectivity. Data were collected during June 2009 to August 2009 of the rainfall reflectivity record from the Royal Rainmaking Research Centre at Pimai, Nakhon Ratchasima Province, and for the surface rainfall, automatic rain gauges were used. The results showed that the Fuzzy-GAs model could be used effectively to estimate rainfall given only three parameters: temperature, relative humidity and radar reflectivity. Furthermore, the results show that the genetic algorithm calibration provided the optimal conditions of the membership function. The simulation results indicated that the results of the Fuzzy-GA model were close to the observed rainfall data more than the results of a multiple linear regression model for both calibration and validation processes. Consequently, we are confident that a Fuzzy-GA model is a useful tool for estimating rainfall.
Fuzzy-GA Approach for Estimating Rainfall over Upper Chi-Mun Basins of Thailand Keywords:
Fuzzy-GA Approach for Estimating Rainfall over Upper Chi-Mun Basins of Thailand authors
A. Kangrang
Department of Civil Engineering, Faculty of Engineering, Mahasarakham University, ۴۴۱۵۰, Thailand.
W. Jiwlong
Department of Civil Engineering, Faculty of Engineering, Mahasarakham University, ۴۴۱۵۰, Thailand.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :