MULTI-OBJECTIVE OPTIMAL DESIGN OF SATMD INCLUDING SOIL-STRUCTURE INTERACTION USING NSGA-II
Publish Year: 1399
Type: Journal paper
Language: English
View: 144
This Paper With 19 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_IJOCE-10-3_002
Index date: 25 November 2023
MULTI-OBJECTIVE OPTIMAL DESIGN OF SATMD INCLUDING SOIL-STRUCTURE INTERACTION USING NSGA-II abstract
In this paper, a procedure has been introduced to the multi-objective optimal design of semi-active tuned mass dampers (SATMDs) with variable stiffness for nonlinear structures considering soil-structure interaction under multiple earthquakes. Three bi-objective optimization problems have been defined by considering the mean of maximum inter-story drift as safety criterion of structural components, absolute acceleration as the criterion of occupants’ convenience, and safety of non-structural acceleration sensitive components, as well as SATMD relative displacement as the cost criterion of the control device. The parameters of the weighting matrices of the instantaneous optimal control algorithm and the maximum and minimum level of variable stiffness of the semi-active device have been considered as design variables. An improved version of the non-dominated sorting genetic algorithm (NSGA-II), has been employed to solve the optimization problems and figure out the set of Pareto optimal solutions. SATMDs with different mass ratios have been designed for an eight-story shear type building with bilinear elasto-plastic stiffness model where the soil-structure interaction has been incorporated by Cone model with three degrees of freedom for the soil. Results show the capability and simplicity of the proposed procedure to design SATMDs considering multiple performance criteria. It is observed that this procedure can offer a wide range of optimal solutions throughout the Pareto front which can be chosen by the designer based on desired performance and application of the structure.
MULTI-OBJECTIVE OPTIMAL DESIGN OF SATMD INCLUDING SOIL-STRUCTURE INTERACTION USING NSGA-II Keywords:
multi-objective optimization , non-dominated genetic algorithm version II (NSGA-II) , semi-active tuned mass damper (SATMD) , soil-structure interaction (SSI).
MULTI-OBJECTIVE OPTIMAL DESIGN OF SATMD INCLUDING SOIL-STRUCTURE INTERACTION USING NSGA-II authors