An Investigation of Asphaltene Deposition Mechanisms During Natural Depletion Process by a Two Phase Modeling Using Genetic Algorithm Technique
Publish Year: 1396
نوع سند: مقاله ژورنالی
زبان: English
View: 92
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JPSTR-7-2_002
تاریخ نمایه سازی: 29 آذر 1402
Abstract:
In this work, the natural depletion process in sandstone and carbonate cores was modeled to investigate the asphaltene deposition mechanisms. A new permeability reduction correlation was proposed based on the Minssieux model that considers a combination of surface deposition, pore throat plugging, and filtration cake mechanisms. The results showed that the filtration cake is a dominant asphaltene deposition mechanism during natural depletion process in both core samples. Therefore, a modified model was proposed with adding formation of filtration cake mechanism due to pore filling to the Wang and Civan deposition model. The absolute average deviation (AAD (%)) for permeability reduction between the results of the three models (including new correlation, the modified model, and Wang and Civan model) and the experimental data were calculated and reported. These values for the three models were ۳.۲۸, ۲.۶۷, and ۴.۸۳% for sandstone core and ۳.۰۱, ۲.۵۸, and ۴.۶۹% for carbonate core respectively. The results showed that the modified model proposed in this study presented good performance for asphaltene deposition prediction
Keywords:
Authors
Sepideh Kashefi
Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan, Iran
Mohammad Nader Lotfollahi
Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan, Iran
Abbass Shahrabadi
Exploration and Production Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :