Hydrocarbon reservoir potential mapping through Permeability estimation by a CUDNNLSTM Deep Learning Algorithm

Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 141

This Paper With 8 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJMGE-57-4_005

تاریخ نمایه سازی: 11 دی 1402

Abstract:

Potential mapping of Permeability is a crucial factor in determining the productivity of an oil and gas reservoirs. Accurately estimating permeability is essential for optimizing production and reducing operational costs. In this study, we utilized the CUDNNLSTM algorithm to estimate reservoir permeability. The drilling core data were divided into a training pool and a validation pool, with ۸۰% of the data used for training and ۲۰% for validation. Based on the high variation permeability along the formation, we developed the CUDNNLSTM algorithm for estimating permeability. First, due to the highly dispersed signals from the sonic, density, and neutron logs, which are related to permeability, we adjusted the algorithm to train for ۱۰۰۰ epochs. However, once the validation loss value reached ۰.۰۱۵۸, the algorithm automatically stopped the training process at epoch number ۵۰۰. Within ۵۰۰ epochs of the algorithm, we achieved an impressive accuracy of ۹۸.۴۲%. Using the algorithm, we estimated the permeabilities of the entire set of wells, and the results were highly satisfactory. The CUDNNLSTM algorithm due to the large number of neurons and the ability to solve high-order equations on the GPU is a powerful tool for accurately estimating permeability in oil and gas reservoirs. Its ability to handle highly dispersed signals from various logs makes it a valuable asset in optimizing production and reducing operational costs, because it is much cheaper than the cost of core extraction and has very high accuracy.

Keywords:

Authors

Behnia Azizzadeh mehmandoust Olya

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Reza Mohebian

School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • . M. Arab Amiri, M. Karimi and A. Alimohammadi, "Hydrocarbon ...
  • M. Badawy, T. Abdel Fattah, S. Abou Shagar, A. Diab, ...
  • . C. W. Spencer, "Review of characteristics of low-permeability gas ...
  • D. Bennion, R. Bietz, F. Thomas and M. Cimolai, "Reductions ...
  • Y. D. Wang, M. J. Blunt, R. T. Armstrong and ...
  • H. Al Khalifah, P. Glover and P. Lorinczi, "Permeability prediction ...
  • M. Abedini, M. Ziaii and J. Ghiasi-freez, "The application of ...
  • F. Feng, P. Wang, Z. Wei, G. Jiang, D. Xu ...
  • R. Rezaee and J. Ekundayo, "Permeability Prediction Using Machine Learning ...
  • M. A. Ahmadi and Z. Chen, "Comparison of machine learning ...
  • B. Singh, P. Sihag, S. M. Pandhiani and S. Gautam, ...
  • N. Alqahtani, R. T. Armstrong and P. Mostaghimi, "Deep Learning ...
  • Y. D. Wang, T. Chung, R. T. Armstrong and P. ...
  • S. George W, "Measurement of permeability I. Theory," Journal of ...
  • D. Sundaram, J. Tamás Svidró, A. Diószegi and J. Svidró, ...
  • R. Baker and j. Doolittle, "Permeability measurement techniques for porous ...
  • B. Azizzadeh mehmandost olya and R. Mohebian, "Q-FACTOR ESTIMATION FROM ...
  • A. Chawla, P. Jacob, B. Lee and S. Fallon, "Bidirectional ...
  • S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, ...
  • C. Kyunghyun, M. Bart van, C. Gulcehre, D. Bahdanau, B. ...
  • T. Stérin, N. Farrugia and V. Gripon, "An intrinsic difference ...
  • C. Sharan, W. Cliff, V. Philippe, C. Jonathan, T. John ...
  • j. Soete, L. Kleipool, H. Claes, S. Claes, H. Hamaekers, ...
  • G. Hamada and V. Joseph, "Developed correlations between sound wave ...
  • C. Kyunghyun , B. v. Merrienboer, G. Caglar , B. ...
  • نمایش کامل مراجع