Recognition of Control Chart Patterns Using Adaptive Neuro-Fuzzy Inference System and selected features
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,043
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICNMO01_151
Index date: 9 March 2013
Recognition of Control Chart Patterns Using Adaptive Neuro-Fuzzy Inference System and selected features abstract
Unnatural patterns in the control charts can be associated with a specific set of assignable causes for process variation. Hence pattern recognition is very useful in identifying process problem. This paper presents a novel hybrid intelligent method for recognition of common types of control chartpatterns (CCP). The proposed method includes three main modules: a feature extraction module, a classifier module and an optimization module. In the feature extraction module, a proper set of the shape and statistical features are proposed as the efficient characteristic of the patterns. In the classifiermodule adaptive neuro-fuzzy inference system (ANFIS) is proposed that is a hybrid combination of artificial neuralnetworks (ANN) and fuzzy inference system (FIS). In ANFIS training, the vector of radius has very important role for its recognition accuracy. Therefore, in the optimization module,bees algorithm (BA) is proposed for finding optimum vector of radius. Simulation results show that the proposed system has high recognition accuracy.
Recognition of Control Chart Patterns Using Adaptive Neuro-Fuzzy Inference System and selected features Keywords:
Recognition of Control Chart Patterns Using Adaptive Neuro-Fuzzy Inference System and selected features authors
Jalil Addeh
Babol University of Technology
Ata Ebrahimzadeh
Babol University of Technology, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :