A Neural Network Model for Predicting the Viscosity of Iranian Crude Oils
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,806
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
ICNMO01_206
Index date: 9 March 2013
A Neural Network Model for Predicting the Viscosity of Iranian Crude Oils abstract
Viscosity is a parameter that plays a pivotal role in reservoir fluid estimations. In this study a robust artificial neural network (ANN) code is developed in MATLAB software topredict the viscosity of Irananian crude oils. The results obtained by the ANN are compared with the experimental data. The prediction procedure is carried out at three different regimes that are bubble point, bellow the bubble point, and above the bubble point using the PVT data of 57 bottom hole samples collected from Iranian Oil Fields. It is confirmed that the ANN yields superior results and has the low deviation from the experimental data
A Neural Network Model for Predicting the Viscosity of Iranian Crude Oils Keywords:
A Neural Network Model for Predicting the Viscosity of Iranian Crude Oils authors
Majid Taghizadeh
Department of Chemical Engineering, Babol University of Technology, ۴۷۱۴۸۷۱۱۶۷ Babol, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :