Application Of Wavelets To Improve Cancer Diagnosis Model In High Dimensional Linguistic DNA Microarray Datasets
Publish place: Wavelets and Linear Algebra، Vol: 8، Issue: 1
Publish Year: 1400
Type: Journal paper
Language: English
View: 127
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_WALA-8-1_007
Index date: 5 February 2024
Application Of Wavelets To Improve Cancer Diagnosis Model In High Dimensional Linguistic DNA Microarray Datasets abstract
DNA microarray datasets suffer scaling and uncertainty problems. This paper develops a model that manages DNA microarray datasets challenges more precisely by using the advantages of Wavelet decomposition and fuzzy numbers. For this aim, the proposed method is utilized to classify linguistic DNA microarray datasets set, where datasets can be given as linguistic genes. Linguistic genes are represented by using triangular fuzzy numbers provided as LR (left-right) fuzzy numbers. Then the WABL method is applied as the defuzzification method. Also, a set of orthogonal wavelet detail coefficients based on wavelet decomposition at different levels is extracted to specify the localized genes of DNA microarray datasets. Three DNA microarray datasets are used to evaluate this method. The experiments are shown that the proposed model has better diagnostic accuracy than other methods.
Application Of Wavelets To Improve Cancer Diagnosis Model In High Dimensional Linguistic DNA Microarray Datasets Keywords:
Application Of Wavelets To Improve Cancer Diagnosis Model In High Dimensional Linguistic DNA Microarray Datasets authors
Nasibeh Emami
Department of computer science, faculty of basic sciences, kosar university of bojnord, bojnord, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :