Rockburst process evaluation using experimental and artificial intelligence techniques
Publish place: 1st Iranian Mining Technologies Conference
Publish Year: 1391
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,321
This Paper With 25 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IMT01_001
تاریخ نمایه سازی: 30 فروردین 1392
Abstract:
Rockburst is characterized by a violent explosion of a certain block causing a sudden rupture in the rock and is quite common in deep tunnels. It is critical to understand the phenomenon of rockburst, focusing on the patterns of occurrence so these events can be avoid andor managed saving costs and possibly lives. The failure mechanism of rockburst needs to be better understood. Laboratory experiments are one of the ways. A description of a system developed at the State Key Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUE) of Beijing is described. Also, several cases of rockburst that occurred around the world were collected, stored in a database and analyzed. The analysis of the collected cases allowed one to build influence diagrams, listing the factors that interact and influence the occurrence of rockburst, as well as the relation between them. Data Mining (DM) techniques were also applied to the database cases in order to determine and conclude on relations between parameters that influence the occurrence of rockburst during underground construction. A methodology was developed based on the use of Bayesian Networks (BN) and applied to the existing information of the database and some numerical applications were analyzed. Conclusions and recommendations are established.
Authors
He Manchao
State Key Laboratory for GeoMechanics and Deep Underground Engineering of China University of Mining & Technology, Beijing, China
L Ribeiro e Sousa
State Key Laboratory for GeoMechanics and Deep Underground Engineering of China University of Mining & Technology, Beijing, ChinaUniversity of Porto, Porto, Portugal
Lohrasb Farmarzi
Mining Engineering Department, Isfehan University of Technology, Esfehan, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :