مقایسه عملکرد الگوریتم های یادگیری ماشین برای پیش بینی شدت بیماری کووید ۱۹ از روی ویژگی های بالینی

Publish Year: 1402
نوع سند: مقاله کنفرانسی
زبان: Persian
View: 41

This Paper With 5 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

ICIORS16_139

تاریخ نمایه سازی: 2 اسفند 1402

Abstract:

بیماری همه گیر کووید۱۹ که عامل ایجاد آن ویروس جدیدی با نام سارس-کووید۲ می باشد از اوایل سال ۲۰۲۰ در جهان شیوع پیدا کرد و باعث مرگ بسیاری از افراد در همه سنین شد. سرعت بالای انتقال این ویروس و افزایش چشمگیر مرگ و میر ناشی از آن و همچنین عدم وجود درمان قطعی برای آن، توجه بسیاری از محققان را برای شناسایی عوامل موثر بر مرگ و میر ناشی از این بیماری به خود جلب کرد. در این تحقیق با توجه به کاربرد الگوریتم های یادگیری ماشین در زمینه پیش بینی، عملکرد الگوریتم های k-نزدیکترین همسایه، k-میانگین و ماشین بردار پشتیبان برای پیش بینی احتمال مرگ و میر مبتلایان به بیماری کووید۱۹ از روی ویژگی های بالینی این بیماران، با یکدیگر مقایسه شده است.

Authors

ملیحه نیک سیرت

استادیار، دانشگاه صنعتی بیرجند

محسن صفاریان

استادیار، دانشگاه صنعتی بیرجند

فاطمه محمدی

دانشگاه صنعتی بیرجند