بهینه سازی سبد سرمایه گذاری به کمک پیش بینی بازده مورد انتظار با استفاده از روش های شبکه عصبی LSTM، جنگل تصادفی و ARIMA
Publish place: Financial Management Perspective، Vol: 13، Issue: 43
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: Persian
View: 148
This Paper With 20 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_FINANC-13-43_001
تاریخ نمایه سازی: 19 اسفند 1402
Abstract:
در جهان امروز اهمیت مدل های بهینه سازی سبد سرمایه گذاری به صورت فزاینده ای مورد توجه قرار گرفته است. هرچند پیش بینی بازده مورد انتظار گزینه های سرمایه گذاری و در نظر گرفتن آن ها در تابع هدف بیشینه سازی سود امری رایج است لیکن مهم ترین نوآوری پژوهش جاری کمینه سازی خطای پیش بینی به عنوان تابع هدف است. این نوآوری به سرمایه گذاران توصیه می کند که در تشکیل سبد سرمایه گذاری علاوه بر سود و ریسک، بر معیار مهم قابل پیش بینی بودن گزینه های سرمایه گذاری نیز تاکید گردد. ادغام پیش بینی بازده مدل های سری زمانی سنتی در تشکیل پورتفولیو می تواند عملکرد مدل بهینه سازی سبد اصلی را بهبود بخشد. از آنجایی که مدل های یادگیری ماشین و یادگیری عمیق برتری قابل توجهی نسبت به مدل های سری زمانی نشان داده اند، این مقاله پیش بینی بازده در تشکیل پورتفولیو را با مدل یادگیری ماشین، یعنی جنگل تصادفی و مدل یادگیری عمیق حافظه ی کوتاه مدت طولانی ترکیب می کند. به منظور ارزیابی عملکرد مدل پیشنهادی، داده های تاریخی ۵ ساله از سال ۱۳۹۶ تا ۱۴۰۱ از شاخص ۵ صنعت بانکی، خودرویی، دارویی، فلزی و نفتی است. نتایج تجربی نشان می دهد که مدل های بهینه سازی میانگین واریانس با پیش بینی بازدهی به وسیله جنگل تصادفی ، بهتر عمل می کنند.
Keywords:
Authors
امیرعلی اقتصاد
دانشجوی کارشناسی ارشد مهندسی صنایع، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
عمران محمدی
استادیار، گروه مهندسی صنایع، دانشگاه علم وصنعت، تهران، ایران
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :