Applying Nano Technology To Remove Toxic H2S Gases Compounds From Exhaust Gases In Primary Aluminium Industry (Monte Carlo Simulation)
Publish place: Iran International Aluminum Conference
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,355
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
IIAC02_030
Index date: 2 May 2013
Applying Nano Technology To Remove Toxic H2S Gases Compounds From Exhaust Gases In Primary Aluminium Industry (Monte Carlo Simulation) abstract
Dealing with the exhaust gases from aluminium smelters is still an interesting subject for investigation. The amount of H2S in aluminium reduction cells is enough to produce H2S gas. Immediate removal of the highly toxic H2S gases makes FTP (Fume Treatment Plant) to just deal with fluoric gases such as HF. Due to the capability of nanotubes in adsorbing gases, this study has been conducted to figure out the adsorption of H2S on (8,8) armchair carbon nanotubes (CNTs). Lennard-Jones potential was used for gas-gas and gas-carbon nanotube interactions and the potential parameters for the carbon-gas and carbon-carbon interactions were obtained from the Lorenz-Berthelot combining rules. The study has been done by using the equation state of Virial and finding the second coefficient in Virial equation. Final steps were the inside density, outside density and total density of nanotubes calculation. Calculations showed that the absorption rate increases with increasing pressure and decreasing temperature.
Applying Nano Technology To Remove Toxic H2S Gases Compounds From Exhaust Gases In Primary Aluminium Industry (Monte Carlo Simulation) Keywords:
Applying Nano Technology To Remove Toxic H2S Gases Compounds From Exhaust Gases In Primary Aluminium Industry (Monte Carlo Simulation) authors
Mohsen ameri siahouei
Almahdi-Hormozal Aluminium Smelter, Bandar abass, P.O. Box:۷۹۱۷۱-۷-۶۳۸۵, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :