سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Implementing Neural Network Price Predictor for Residential Load Control System in Real-Time Electricity Pricing Environments

Publish Year: 1391
Type: Conference paper
Language: English
View: 1,326

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

EIAC01_012

Index date: 3 May 2013

Implementing Neural Network Price Predictor for Residential Load Control System in Real-Time Electricity Pricing Environments abstract

Smart grids are one of the newest world's technologies in transmitting electricity. The main goal in these grids is to provide customers with the best quality and the most efficient services, while imposing the least number of threats for the environment. The major topic in smart grid discussions is modelling a dynamic pricing system that can be applied in these grids. Though most of the researches done, confirm the positive effects of implementing these techniques in all aspects from customer to producer and protecting environment, it must be noted that lack of knowledge to answer price changes effectively and also lack of proper utilities for taking advantage of this form of pricing, in order to manage electrical costs, are the most significant barriers on the way of dynamic pricing tactics to work efficiently. In this research, designing a smart system for managing electrical costs for a residential customer in a time varying environment will be discussed with focusing on proposing an efficient price prediction unit by using neural networks. Results show that in comparison with other prediction tactics neural network systems in spite of their simplicity have a high ability of predicting the upcoming prices

Implementing Neural Network Price Predictor for Residential Load Control System in Real-Time Electricity Pricing Environments Keywords:

Implementing Neural Network Price Predictor for Residential Load Control System in Real-Time Electricity Pricing Environments authors

M. R. Mosavi

Department of Electrical Engineering, Iran University of Science and Technology

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
J. P. Connolly, "Effect of Real-Time Electricity Pricing on Renewable ...
G. Barbose, C. Goldman and B. Neenan "A Survey of ...
A. H. Mohsenian-rad and A. Leon-Garcia, "Optimal Residential Load Control ...
W. Frank, "Residential Customer Response to Real-Time Pricing: The Anaheim ...
H. Allcott, "Real Time Pricing and Electricity Markets", Working Paper, ...
M. A. Piette, G. Ghatikar, S. Kiliccote and D. Watson, ...
S. Tiptipakorn and W. J. Lee, "A residenal C on ...
A. H. Mohsenian-Rad, _ Wong, .. Jatskevich and R. Schober, ...
S. Tiptipakorn and W. J. Lee, "A residenal _ on ...
L. B. Lave and K. Spees, "Demand Response and Electricity ...
A. Ipakchi and F. Albuyeh, "Grid of the Future", IEEE ...
M. Sanjib, "Short Term Load Forecasting using Computational Intelligence Methods", ...
N. Amjady, A. Daraeepour and F. Keynia, "Day-Ahead Electricity Price ...
R. Bisoi, P. K. Dash, V. Padhee and M H. ...
نمایش کامل مراجع