Design and Optimization of a Photonic Crystal-Based All-Optical XOR Gate Using Machine Learning
Publish place: majlesi Journal of Electrical Engineering، Vol: 18، Issue: 1
Publish Year: 1403
Type: Journal paper
Language: English
View: 147
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_MJEE-18-1_001
Index date: 28 April 2024
Design and Optimization of a Photonic Crystal-Based All-Optical XOR Gate Using Machine Learning abstract
In this article, a two-dimensional photonic crystal-based XOR gate is designed and simulated. For this purpose, an initial two-dimensional photonic crystal structure is chosen and waveguides are created for inputs and outputs. Then, defect rods are selected so that the obtained outputs are approximately consistent with the XOR gate truth table. After that, we will be looking for the best output so that the highest optical power is created for logic 1 and the lowest power in the logical state of 0. For this reason, the simulation is performed for four defect rods and the output is obtained for different the radius of the rods. Then, using the K-Nearest Neighbors algorithm, which is a machine learning algorithm, the best output for logic 0 and also for logic 1 is obtained. The results show that the designed logic gate has high output power in logic 1 and very low power in the logic 0 state.
Design and Optimization of a Photonic Crystal-Based All-Optical XOR Gate Using Machine Learning Keywords:
Design and Optimization of a Photonic Crystal-Based All-Optical XOR Gate Using Machine Learning authors
Fariborz Parandin
Department of Electrical Engineering, Islamic Azad University, Kermanshah Branch, Kermanshah, Iran
Alireza Mohamadi
Department of Computer Engineering, Islamic Azad University, Kermanshah Branch, Kermanshah, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :