Intrusion Detection for IoT Network Security with Deep learning
Publish Year: 1403
Type: Journal paper
Language: English
View: 159
This Paper With 20 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
Export:
Document National Code:
JR_JADM-12-1_004
Index date: 29 May 2024
Intrusion Detection for IoT Network Security with Deep learning abstract
IoT devices has witnessed a substantial increase due to the growing demand for smart devices. Intrusion Detection Systems (IDS) are critical components for safeguarding IoT networks against cyber threats. This study presents an advanced approach to IoT network intrusion detection, leveraging deep learning techniques and pristine data. We utilize the publicly available CICIDS2017 dataset, which enables comprehensive training and testing of intrusion detection models across various attack scenarios, such as Distributed Denial of Service (DDoS) attacks, port scans, botnet activity, and more. Our goal is to provide a more effective method than the previous methods. Our proposed deep learning model incorporates dense transition layers and LSTM architecture, designed to capture both spatial and temporal dependencies within the data. We employed rigorous evaluation metrics, including sparse categorical cross-entropy loss and accuracy, to assess model performance. The results of our approach show outstanding accuracy, reaching a peak of 0.997 on the test data. Our model demonstrates stability in loss and accuracy metrics, ensuring reliable intrusion detection capabilities. Comparative analysis with other machine learning models confirms the effectiveness of our approach. Moreover, our study assesses the model's resilience to Gaussian noise, revealing its capacity to maintain accuracy in challenging conditions. We provide detailed performance metrics for various attack types, offering insights into the model's effectiveness across diverse threat scenarios.
Intrusion Detection for IoT Network Security with Deep learning Keywords:
Intrusion Detection for IoT Network Security with Deep learning authors
Roya Morshedi
Department of Computer Engineering, Yazd University, Yazd, Iran.
S. Mojtaba Matinkhah
Department of Electrical Engineering, Yazd University, Yazd, Iran.
Mohammad Taghi Sadeghi
Department of Electrical Engineering, Yazd University, Yazd, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :