سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Comparing the performance of xgboost, Gradient Boosting and GBLUP models under different genomic prediction scenarios

Publish Year: 1403
Type: Journal paper
Language: English
View: 105

This Paper With 7 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_KLST-12-1_004

Index date: 16 June 2024

Comparing the performance of xgboost, Gradient Boosting and GBLUP models under different genomic prediction scenarios abstract

AbstractThe aim of this study was to study the performance of xgboost algorithm in genomic evaluation of complex traits as an alternative for Gradient Boosting algorithm (GBM). To this end, genotypic matrices containing genotypic information for, respectively, 5,000 (S1), 10,000 (S2) and 50,000 (S3) single nucleotide polymorphisms (SNP) for 1000 individuals was simulated. Beside xgboost and GBM, the GBLUP which is known as an efficient algorithm in terms of accuracy, computing time and memory requirement was also used to predict genomic breeding values. xgboost, GBM and GBLUP were run in R software using xgboost, gbm and synbreed packages. All the analyses were done using a machine equipped with a Core i7-6800K CPU which had 6 physical cores. In addition, 32 gigabyte of memory was installed on the machine. The Person's correlation between predicted and true breeding values (rp,t) and the mean squared error (MSE) of prediction were computed to compare predictive performance of different methods. While GBLUP was the most efficient user of memory, GBM required a considerably high amount of memory to run. By increasing size of data from S1 to S3, GBM went out from the competition mainly due to its high demand for memory. Parallel computing with xgboost reduced running time by %99 compared to GBM. The speedup ratios (the ratio of the GBM runtime to the time taken by the parallel computing by xgboost) were 444 and 554 for the S1 and S2 scenarios, respectively. In addition, parallelization efficiency (speed up ratio/number of cores) were, respectively, 74 and 92 for the S1 and S2 scenarios, indicating that by increasing the size of data, the efficiency of parallel computing increased. The xgboost was considerably faster than GBLUP in all the scenarios studied. Accuracy of genomic breeding values predicted by xgboost was similar to those predicted by GBM. While the accuracy of prediction in terms of rp,t was higher for GBLUP, the MSE of prediction was lower for xgboost, specially for larger datasets. Our results showed that xgboost could be an efficient alternative for GBM as it had the same accuracy of prediction, was extremely fast and needed significantly lower memory requirement to predict the genomic breeding values.

Comparing the performance of xgboost, Gradient Boosting and GBLUP models under different genomic prediction scenarios Keywords:

Comparing the performance of xgboost, Gradient Boosting and GBLUP models under different genomic prediction scenarios authors

Farhad Ghafouri-Kesbi

Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
ReferencesAbdollahi-Arpanahi, R., Pakdel, A., Nejati-Javaremi, A, Moradi Shahre Babak, M., ...
Auinger, H.S., Wimmer, V., Auinger, H.J., Albrecht, T., Schoen, C.C., ...
Carlborg, Ö., Andersson-Eklund, L., Andersson, L., ۲۰۰۱. Parallel computing in ...
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., ...
Fernando, RL., Grossman, M., ۱۹۸۹. Marker-assisted selection using best linear ...
Ghafouri-Kesbi, F., Rahimi-Mianji, G., Honarvar, M., Nejati-Javaremi, A., ۲۰۱۷. Predictive ...
González-Recio, O., Rosa, GJM., Gianola, D., ۲۰۱۴. Machine learning methods ...
Greenwell, B., Bradley, B., Cunningham, J., ۲۰۱۹. gbm: Generalized Boosted ...
Hastie, T.J., Tibshirani, R., Friedman, J., ۲۰۰۹. The Elements of ...
Intel® Hyper-Threading Technology., ۲۰۰۳. Technical User’s Guide. Available at: http://www.cslab.ece.ntua.gr/courses/advcomparch/۲۰۰۷/material/readings/Intel%۲۰Hyper-Threading%۲۰Technology.pdfMa, ...
Kim, B., Kim, S., ۲۰۱۸. Prediction of inherited genomic susceptibility ...
Matukumalli, L.K., Schroeder, S., DeNise, S.K., ۲۰۱۱. Analyzing LD blocks ...
Matthews, D., Kearney, J.F., Cromie, AR., ۲۰۱۹. Genetic benefits of genomic ...
Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., ۲۰۰۱. Prediction of total ...
Neves, H.H.R., Carvalheiro, R., Queiroz, S.A., ۲۰۱۲. A comparison of ...
Ødegård, J., Indahl, U., Strandén, I., Meuwissen, T.H.E., ۲۰۱۸. Large‑scale ...
Oguto, J.O., Piepho, H.P., Schulz-Streeck, T., ۲۰۱۱. A comparison of ...
Orozco-Arias, S., Tabares-Soto, R., Ceballos, D., Guyot, R., ۲۰۱۷. Parallel ...
R Core Team., ۲۰۲۲. R: A language and environment for ...
Singh, P.P., Nagpal R., Pal, R., Nagamani, V., Rao, B.B.P., ...
Smith, C., ۱۹۶۷. Improvement of metric traits through specific genetic ...
Technow, F., ۲۰۱۳. hypred: Simulation of genomic data in applied ...
Thompson, K., Charnigo, R., ۲۰۱۵. Parallel Computing in Genome-Wide Association ...
VanRaden, PM., ۲۰۰۸. Efficient methods to compute genomic predictions. Journal ...
Wang, X., Xu, Y., Hu, Z., Xu, C., ۲۰۱۸. Genomic ...
Wickham, H., ۲۰۱۸. pryr: Useful tools to pry back the ...
Wu, XL., Sun, C., Beissinger, TM., Rosa, GJ., Weigel, KA., ...
Ying, X., ۲۰۱۹. An overview of overfitting and its solutions. ...
Zhang, H., Yin, L., Wang, M., ۲۰۱۹. Genomic selection for ...
نمایش کامل مراجع