QSAR Study on DYRK۱A Inhibitors for Regenerative Therapy in Diabetes
Publish place: Advanced Journal of Chemistry-Section A، Vol: 7، Issue: 5
Publish Year: 1403
Type: Journal paper
Language: Persian
View: 129
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_AJCS-7-5_003
Index date: 16 June 2024
QSAR Study on DYRK۱A Inhibitors for Regenerative Therapy in Diabetes abstract
The QSAR models were developed for predicting DYRK۱A biological activity (EC۵۰) with a series of ۱,۵-naphthyridines derivatives as highly potent DYRK۱A-dependent inducers of human β-cell replication using multiple linear regressions (MLR) as a linear method and support vector machine (SVM) as a nonlinear method. The ۴۹ chemicals in data set were randomly partitioned into training and test subsets. For the selection of molecular descriptors, the genetic algorithm (GA) feature selection approach was used, followed by MLR and SVM. Testing the prediction abilities of the obtained models were conducted using the tests of cross-validation, Y-randomization, and an external test set. By comparing the results of GA-MLR and GA-SVM models, it is clear that GA-SVM produced better results (R۲train= ۰.۹۴۶, Ftrain= ۷۸.۶۴۱, RMSE train= ۰.۲۰۳), although both models had adequate predictive quality. Using the predicted results of this study, new and potent DYRK۱A inhibitors can be designed. In addition, this study provides insight into a new strategy to design diabetes drugs.
QSAR Study on DYRK۱A Inhibitors for Regenerative Therapy in Diabetes Keywords:
QSAR Study on DYRK۱A Inhibitors for Regenerative Therapy in Diabetes authors
Faezeh Khosravi
Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
Roya Kiani-anbouhi
Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
Eslam Pourbasheer
Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :