Learning Algorithm for Training CMAC by Using Reinforcement Learning and Comparative Discount Rate

Publish Year: 1391
نوع سند: مقاله کنفرانسی
زبان: English
View: 1,136

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

SASTECH07_107

تاریخ نمایه سازی: 30 تیر 1392

Abstract:

CMAC is a calculation model based on human cerebellum and is offered as a simple model and may be observed as a lookup table. CMAC due to high efficiency has great application in the field of modeling and control; therefore, requirement for methods to accelerate more exact learning process have made relookupers to use more diverse learning algorithms. In the present article a new algorithm for obtaining more accelerate convergence and therefore less error is offered that operates based on reinforcement learning algorithm. Whereas fixed discount rate in reinforcement learning algorithm is not suitable, a new algorithm based on discount rate of variable is offered in the present article that is applied for training CMAC. Results of simulation show that the recommended algorithm in comparison to contractual CMAC considerably decreases error.

Authors

Nazal Modhej

Department of Computer Engineering, Soosangerd Branch, Islamic Azad University, Khouzestan-Iran

Jamil Neisi

Khoramshahr Branch, Islamic Azad University, Khouzestan-Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • -Albus J.S, "A new approach to manipulator control: The cerebellar ...
  • - Albus J.., "Data Storage in the Cerebellar Model Articulation ...
  • Glanz F.H. & Miller W.T., "Shape Recognition Using a CMAC ...
  • Parks P.C., Militzer J., "Convergence Properties of Associative Memory Storage ...
  • Ming-Feng Yeh and Kuang-Chiung Chang, "A Self- Organizing CMAC Network ...
  • Mato Baotic, Ivan Petrovic, Nedjeljko Peric, "Convex Optimizatio in Trainning ...
  • PO-LUN CHANG, YING-KUEI YANG, HORNG-LIM SHIEH, "A novel learn ing ...
  • Li Xin, Chen Wei, Chen Mei, Hefei, "Reinforcement Learning Controlbased ...
  • PatryK A. Laurent, "The emergence of saliency and novelty responses ...
  • K.H. Quai, Chai Quek, "Maximum reward reinforcement learning: A non-cumulative ...
  • Luis Weuaga, "Active Training on the CMAC Neuat Network", 0- ...
  • _ Irdn, Bandar-Abba. 7-8 March, 2013 Orgonized by Khavdran Institute ...
  • Hisashi Handa, "Detecting of Critical Situations by CMA C+ Q-L ...
  • Francisco .J. Gonza lez-Serrano, Anibal R. Figueiras- Vidal, and Antonio ...
  • Oliver Nelles, 'Nonlinear System Identification :From Classical Approaches To Neural ...
  • نمایش کامل مراجع