سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Modeling and Predicting the Survival of Breast Cancer Patients via Deep Neural Networks and Bayesian Algorithm

Publish Year: 1403
Type: Journal paper
Language: English
View: 113

This Paper With 8 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_IJMP-21-3_009

Index date: 17 August 2024

Modeling and Predicting the Survival of Breast Cancer Patients via Deep Neural Networks and Bayesian Algorithm abstract

Introduction: Due to breast cancer's prevalence as the second leading cause of cancer death worldwide, accurate survival prediction models are crucial. This study aimed to use an optimized deep neural network to predict breast cancer patient survival.Material and Methods: The present study is an analytical study. The information utilized in this research is derived from the METABRIC database, associated with the molecular categorization of breast cancer patients, from the International Federation of Breast Cancer's Molecular Taxonomy Data. The total number of patients studied is 1981. Of these, 888 patients were under care until their death, and the remaining patients withdrew from the study during its course. In this database, 22 clinical features of patients have been considered, which includes a total of 6 quantitative features and 16 qualitative features. A deep neural network model called the optimized DeepHit is used to predict survival. The optimal parameters for specific variables of the neural network are obtained by the Bayesian algorithm.Results: The optimized model has achieved the criterion of c_index = 0.748, which is a criterion for measuring the capability of survival analysis models.Conclusion: The proposed model was compared with previous models using real and synthetic datasets. The results show that the optimized DeepHit achieved significantly better performance and statistically significant improvements over previous methods.

Modeling and Predicting the Survival of Breast Cancer Patients via Deep Neural Networks and Bayesian Algorithm Keywords:

Modeling and Predicting the Survival of Breast Cancer Patients via Deep Neural Networks and Bayesian Algorithm authors

Soheila Rezaei

Department of Electrical Engineering, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Hossein Ghayoumi Zadeh

Department of Electrical Engineering, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Mohammad Hossein Gholizadeh

Department of Electrical Engineering, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

ali fayazi

Department of Electrical Engineering, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

khosro rezaee

Department of Biomedical Engineering, Meybod University, Meybod, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
El-Bendary N, Belal NA. A feature-fusion framework of clinical, genomics, ...
Singh D, Singh AK. Role of image thermography in early ...
McPherson K, Steel C, Dixon JM. Breast cancer-epidemiology, risk factors, ...
Forouzanfar MH, Foreman KJ, Delossantos AM, Lozano R, Lopez AD, ...
Delen, Delen D, Walker G, Kadam A. Predicting breast cancer ...
Campone M, Fumoleau P, Bourbouloux E, Kerbrat P, Roché H. ...
hammadpour A, Jahangirian E, Moharrami T, Rad GG, Sheikhani LJ, ...
Mukherjee A, Russell R, Chin SF, Liu B, Rueda OM, ...
Rakha EA, Green AR. Molecular classification of breast cancer: what ...
Hao J, Kim Y, Mallavarapu T, Oh JH, Kang M. ...
Collett D. Modelling survival data in medical research. ۲۰۱۵: CRC ...
Stevenson M, EpiCentre IV. An introduction to survival analysis. EpiCentre, ...
Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier ...
Fisher LD, Lin DY. Time-dependent covariates in the Cox proportional-hazards ...
Therneau TM, Grambsch PM, Therneau TM, Grambsch PM. The cox ...
O’Brien RC, Ishwaran H, Szczotka-Flynn LB, Lass JH. Random survival ...
Pickett KL, Suresh K, Campbell KR, Davis S, Juarez-Colunga E. ...
Liestbl K, Andersen PK, Andersen U.Survival analysis and neural nets. ...
Faraggi D, Simon R. A neural network model for survival ...
Street WN. A Neural Network Model for Prognostic Prediction. InICML.۱۹۹۸; ...
Yu CN, Greiner R, Lin HC, Baracos V. Learning patient-specific ...
Fotso S. Deep neural networks for survival analysis based on ...
Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, ...
Harrell Jr FE, Lee KL, Mark DB. Multivariable prognostic models: ...
Lee C, Zame W, Yoon J, Van Der Schaar M. ...
A Tour of Survival Analysis, from Classical to Modern, Some ...
Nagpal C, Li X, Dubrawski A. Deep survival machines: Fully ...
Cuevas-Delgado P, Dudzik D, Miguel V, Lamas S, Barbas C. ...
Frazier PI. A tutorial on Bayesian optimization. arXiv preprint arXiv:۱۸۰۷.۰۲۸۱۱. ...
Lee ML, Whitmore GA. Threshold regression for survival analysis: modeling ...
نمایش کامل مراجع