سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Numerical Analysis and Predictive Modeling Using Artificial Intelligence of the Relaxation Zone Around Hangingwall of Sublevel Open Stopes in Underground Mines

Publish Year: 1403
Type: Journal paper
Language: English
View: 66

This Paper With 22 Page And PDF Format Ready To Download

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

JR_JMAE-15-4_009

Index date: 7 September 2024

Numerical Analysis and Predictive Modeling Using Artificial Intelligence of the Relaxation Zone Around Hangingwall of Sublevel Open Stopes in Underground Mines abstract

The aim of this study is to thoroughly analyze the relaxation zone developing around sublevel stopes in underground mines and identify the main parameters controlling its extent. A numerical approach based on the finite element method, combined with the Hoek-Brown failure criterion, was implemented to simulate various geometric configurations, geological conditions, and in-situ stress states. A total of 425 simulations were carried out by varying depth, horizontal-to-vertical stress ratio (k), rock mass quality (RMR), foliation orientation and spacing, as well as the height, width, and inclination of the sublevels. The results enabled the development of robust predictive models using regression analysis techniques and artificial neural networks (ANNs) to estimate the extent of the relaxation zone as a function of the different input parameters. It was demonstrated that depth and the k ratio significantly influence the extent of the relaxation zone. Additionally, a decrease in rock mass quality leads to a substantial increase in this zone. Structural characteristics, such as foliation orientation and spacing, also play a decisive role. Finally, the geometric parameters of the excavations, notably the height, width, and inclination of the sublevels, directly impact stress redistribution and the extent of the relaxation zone. The overall ANN model, taking into account all these key parameters, exhibited high accuracy with a correlation coefficient of 0.97. These predictive models offer valuable tools for optimizing the design of underground mining operations, improving operational safety, and increasing productivity.

Numerical Analysis and Predictive Modeling Using Artificial Intelligence of the Relaxation Zone Around Hangingwall of Sublevel Open Stopes in Underground Mines Keywords:

Numerical Analysis and Predictive Modeling Using Artificial Intelligence of the Relaxation Zone Around Hangingwall of Sublevel Open Stopes in Underground Mines authors

Soufi Amine

Mohammed V University in Rabat, Morocoo

Zerradi Youssef

Mohammed V University in Rabat, Morocoo

Soussi Mohamed

Mohammed V University in Rabat, Morocoo

Ouadif Latifa

Mohammed V University in Rabat, Morocoo

Bahi Anas

Mohammed V University in Rabat, Morocoo

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
. Hudson, J. A. (۱۹۹۳). Comprehensive rock engineering: principles, practice ...
. Soufi, A., Bahi, L., Ouadif, L., & Kissai, J. ...
. Soufi, A., Bahi, L., Ouadif, L., (۲۰۱۸). Adjusted anisotropic ...
. Yaylacı, M., Abanoz, M., Yaylacı, E. U., Ölmez, H., ...
. Yaylacı, M., Abanoz, M., Yaylacı, E. U., Ölmez, H., ...
. Yaylacı, M., Şabano, B. Ş., Özdemir, M. E., & ...
. Turan, M., Uzun Yaylacı, E., & Yaylacı, M. (۲۰۲۳). ...
. Yaylacı, E. U., Öner, E., Yaylacı, M., Özdemir, M. ...
. Yaylacı, M., Yaylacı, E. U., Özdemir, M. E., Öztürk, ...
. Özdemir, M. E., & Yaylac, M. (۲۰۲۳). Research of ...
. Yaylaci, E. U., Yaylaci, M., Ozdemir, M. E., Terzi, ...
. Yaylacı, M., Şabano, B. Ş., Özdemir, M. E., & ...
. Fu, J., Safaei, M. R., Haeri, H., Sarfarazi, V., ...
. Kumar, H., Deb, D., & Chakravarty, D. (۲۰۱۷). Design ...
. Liu, J., Lu, P., & Zhang, L. (۲۰۲۲). Influence ...
. Fávero, L. P., Belfiore, P., & de Freitas Souza, ...
. Xiang‐Hui, Q. I. N., Peng, Z., Cheng‐Jun, F. E. ...
. Herget, G. (۱۹۸۷, February). Stress assumptions for underground excavations ...
. Zhao, X., & Zhou, X. (۲۰۲۲). Design method and ...
. Henning, J. G., & Mitri, H. S. (۲۰۰۷). Numerical ...
. Yao, X., Allen, G., & Willett, M. (۱۹۹۹). Dilution ...
. Diederichs, M. S. (۲۰۰۰). Instability of hard rockmasses, the ...
. Pérez-Rey, I., Moreno, J., & Muñiz-Menéndez, M. (۲۰۲۱, August). ...
. Moayedi, H., Mosallanezhad, M., Rashid, A. S. A., Jusoh, ...
. Koopialipoor, M., Fahimifar, A., Ghaleini, E. N., Momenzadeh, M., ...
. Al-Shamisi, M. H., Assi, A. H., & Hejase, H. ...
. Riedmiller, M. (۱۹۹۴). Advanced supervised learning in multi-layer perceptrons—from ...
. Trivedi, R., Singh, T. N., Mudgal, K., & Gupta, ...
. Wang, X., Lu, H., Wei, X., Wei, G., Behbahani, ...
. Nikafshan Rad, H., Bakhshayeshi, I., Wan Jusoh, W. A., ...
نمایش کامل مراجع