A pseudo−operational collocation method for optimal control problems of fractal−fractional nonlinear Ginzburg−Landau equation
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 49
This Paper With 25 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAO-14-30_009
تاریخ نمایه سازی: 17 شهریور 1403
Abstract:
The presented work introduces a new class of nonlinear optimal control problems in two dimensions whose constraints are nonlinear Ginzburg−Landau equations with fractal−fractional (FF) derivatives. To acquire their ap-proximate solutions, a computational strategy is expressed using the FF derivative in the Atangana−Riemann−Liouville (A-R-L) concept with the Mittage-Leffler kernel. The mentioned scheme utilizes the shifted Jacobi polynomials (SJPs) and their operational matrices of fractional and FF derivatives. A method based on the derivative operational matrices of SJR and collocation scheme is suggested and employed to reduce the problem into solving a system of algebraic equations. We approximate state and control functions of the variables derived from SJPs with unknown coef-ficients into the objective function, the dynamic system, and the initial and Dirichlet boundary conditions. The effectiveness and efficiency of the suggested approach are investigated through the different types of test problems.
Keywords:
Fractal−fractional (FF) derivative , Shifted Jacobi polynomials (SJPs) , Operational matrices , Nonlinear Ginzburg−Landau equation , Opti- mal control problem
Authors
T. Shojaeizadeh
Department of Mathematics, Qom Branch, Islamic Azad University, Qom, Iran.
E. Golpar-Raboky
Department of Mathematics, University of Qom, Qom, Iran.
Parisa Rahimkhani
Faculty of Science, Mahallat Institute of Higher Education, Mahallat, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :