A pseudo−operational collocation method for optimal control problems of fractal−fractional nonlinear Ginzburg−Landau equation

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 49

This Paper With 25 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJNAO-14-30_009

تاریخ نمایه سازی: 17 شهریور 1403

Abstract:

The presented work introduces a new class of nonlinear optimal control problems in two dimensions whose constraints are nonlinear Ginzburg−Landau equations with fractal−fractional (FF) derivatives. To acquire their ap-proximate solutions, a computational strategy is expressed using the FF derivative in the Atangana−Riemann−Liouville (A-R-L) concept with the Mittage-Leffler kernel. The mentioned scheme utilizes the shifted Jacobi polynomials (SJPs) and their operational matrices of fractional and FF derivatives. A method based on the derivative operational matrices of SJR and collocation scheme is suggested and employed to reduce the problem into solving a system of algebraic equations. We approximate state and control functions of the variables derived from SJPs with unknown coef-ficients into the objective function, the dynamic system, and the initial and Dirichlet boundary conditions. The effectiveness and efficiency of the suggested approach are investigated through the different types of test problems.

Keywords:

Fractal−fractional (FF) derivative , Shifted Jacobi polynomials (SJPs) , Operational matrices , Nonlinear Ginzburg−Landau equation , Opti- mal control problem

Authors

T. Shojaeizadeh

Department of Mathematics, Qom Branch, Islamic Azad University, Qom, Iran.

E. Golpar-Raboky

Department of Mathematics, University of Qom, Qom, Iran.

Parisa Rahimkhani

Faculty of Science, Mahallat Institute of Higher Education, Mahallat, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Aranson, I.S. and Kramer, L. The world of the complex ...
  • Atangana, A. Fractal-fractional differentiation and integration: connect-ing fractal calculus and ...
  • Atangana, A. and Qureshi, S. Modeling attractors of chaotic dynamical ...
  • Bhrawy, A.H., Doha, E.H., Baleanu, D. and Ezz-Eldien, S.S. A ...
  • Darehmiraki, M., Farahi, M.H. and Effati, S. A novel method ...
  • Ding, H. and Li, C. High-order numerical algorithm and error ...
  • Doha, E.H. On the construction of recurrence relations for the ...
  • Doha, E.H., Bhrawy, A.H. and Ezz-Eldien, S.S. A new Jacobi ...
  • Du, N., Wang, H. and Liu, W. A fast gradient ...
  • Goyal, A., Raju, T.S. and Kumar, C.N. Lorentzian-type soliton solutions ...
  • Gu, X.M., Shi, L. and Liu, T. Well-posedness of the ...
  • Gunzburger, M.D., Hou, L.S. and Ravindran, S.S. Analysis and approx-imation ...
  • Hasegawa, A. Optical Solitons in Fibers, In Optical solitons in ...
  • Heydari, M.H., Atangana, A. and Avazzadeh, Z. Chebyshev polynomi-als for ...
  • Heydari, M.H., Avazzadeh, Z. and Atangana, A. Shifted Jacobi polynomi-als ...
  • Kilicman, A. and Al Zhour, Z.A.A. Kronecker operational matrices for ...
  • Li, B. and Zhang, Z. A new approach for numerical ...
  • Li, M., Huang, C. and Wang, N. Galerkin finite element ...
  • Lopez, V. Numerical continuation of invariant solutions of the complex ...
  • Luke, Y.L. The special functions and their approximations, Academic press, ...
  • Mainardi, F. and Gorenflo, R. On Mittag-Leffler-type functions in frac-tional ...
  • Mophou, G.M. Optimal control of fractional diffusion equation, Com-puters and ...
  • Shojaeizadeh, T., Mahmoudi, M. and Darehmiraki, M. Optimal control problem ...
  • Shokri, A. and Bahmani, E. Direct meshless local Petrov-–Galerkin (DMLPG) ...
  • Tarasov, V. Fractional dynamics: applications of fractional calculus to dynamics ...
  • Toledo-Hernandez, R., Rico-Ramirez, V., Rico-Martinez, R., Hernandez-Castro, S. and Diwekar, ...
  • Wang, N. and Huang, C. An efficient split-step quasi-compact finite ...
  • Wang, P. and Huang, C. An implicit midpoint difference scheme ...
  • Weitzner, H. and Zaslavsky, G.M. Commun Nonlinear, Sci. Numer. Sim-ulation ...
  • Yan, Y., Moxley III, F.I. and Dai, W. A new ...
  • Zaslavsky, G. Hamiltonian chaos and fractional dynamics, Oxford: Ox-ford University ...
  • Zeng, W., Xiao, A. and Li, X. Error estimate of ...
  • نمایش کامل مراجع