سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Lung Cancer detection Using Swin UNetTRansformers method

Publish Year: 1403
Type: Conference paper
Language: English
View: 73

متن کامل این Paper منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل Paper (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دانلود نمایند.

این Paper در بخشهای موضوعی زیر دسته بندی شده است:

Export:

Link to this Paper:

Document National Code:

ICNRTEE02_059

Index date: 25 September 2024

Lung Cancer detection Using Swin UNetTRansformers method abstract

Lung cancer remains a significant global healthchallenge, with early detection playing a critical role inimproving patient outcomes. In this paper, we propose a noveldeep learning framework for lung cancer detection leveragingthe Swin-UNetR architecture. We begin by preprocessing themedical images to enhance contrast and remove noise,followed by patch-based representation to facilitate efficientprocessing with Swin-UNetR. The Swin Transformer blockswithin the architecture enable the model to capture intricatespatial dependencies and long-range contextual informationcrucial for accurate nodule detection. We evaluate theproposed framework on a comprehensive dataset comprisingdiverse lung imaging modalities, including CT scans. Ourexperimental results demonstrate the effectiveness of Swin-UNetR in accurately detecting lung cancer nodules,outperforming existing state-of-the-art methods in terms ofboth detection accuracy and computational efficiency

Lung Cancer detection Using Swin UNetTRansformers method Keywords:

Lung Cancer detection Using Swin UNetTRansformers method authors

Mahlagha Afrasiabi

Department of Computer EngineeringHamedan University of TechnologyHamedan, IRAN

Nastaran Karimi Monsefi

Department of Computer EngineeringHamedan University of TechnologyHamedan, IRAN