Modeling of PM۱۰ Particulate Matter in Ahvaz City Using Remote Sensing and Meteorological Parameters

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 50

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JEHSD-9-3_002

تاریخ نمایه سازی: 15 مهر 1403

Abstract:

Introduction: In recent years, remote sensing (RS) products have emerged as effective tools for monitoring air pollution. This study aims to predict the concentrations of particulate matter with a diameter smaller than ۱۰μm (PM۱۰) using a multivariate linear regression (MLR) model, incorporating both Aerosol Optical Depth (AOD) products and meteorological parameters. Material and Methods: In this study, data on PM۱۰ concentrations, Aerosol Optical Depth (AOD), and meteorological parameters (wind speed, temperature, humidity, and horizontal visibility) were used. The study focused on the time ۱۵:۰۰ each day, as this time was identified as having significant data relevance. The methodology section also consisted of three steps: ۱) pairwise correlation analysis: The relationship between meteorological parameters, AOD, and PM۱۰ was assessed using the pairwise correlation method. ۲) Model development: A MLR model was developed to predict PM۱۰ concentrations. ۳) Validation: The model was validated using a separate dataset, ensuring that ۷۰% of the data was used for training, and ۳۰% for testing and validation. Results: The pairwise correlation analysis revealed a strong correlation (۰.۸۶) between AOD remote sensing index and PM۱۰. The highest correlation (۰.۹) was observed during the spring season. The five developed equations to estimate the PM۱۰ index yielded correlation coefficients ranging from ۰.۸۶ to ۰.۹۰. Notably, the highest correlation was achieved when AOD data and all the meteorological parameters were utilized simultaneously. These results highlighted the utility of remote sensing products and meteorological data in air quality monitoring and prediction. Conclusion: This study demonstrates that a MLR model incorporating AOD and meteorological parameters can effectively predict PM۱۰ concentrations in Ahvaz City, particularly during dust storms in hot seasons. These findings can aid policymakers and public health officials in developing strategies to mitigate the adverse effects of dust storms on air quality and public health.

Authors

Morteza Abdullatif Khafaie

Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Mona Saeidi

Department of Environmental Health Engineering, Faculty of Health, Yasuj. University of Medical Sciences, Yasuj, Iran

Shahin Mohammadi

Department of Remote Sensing and GIS, Faculty of Earth Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Hossein Marioryad

Department of Environmental Health Engineering, Faculty of Health, Yasuj. University of Medical Sciences, Yasuj, Iran

Arsalan Jamshidi

Department of Environmental Health Engineering, Faculty of Health, Yasuj. University of Medical Sciences, Yasuj, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Rangzan K, Kabolizadeh M, Mohammadi S. Assessment of spatiotemporal changes ...
  • Amanollahi J, Kaboodvandpour S. Assessment of MODIS images and data ...
  • Rezaali M, Fouladi-Fard R. A narrative summary of air pollution ...
  • Rangzan K, Zarasvandi A, Abdolkhani A, et al. Modeling of ...
  • Carmona JM, Gupta P, Lozano-García DF, et al. Evaluation of ...
  • Saeedi R, Khani Jazani R, Khaloo SS, et al. Risk ...
  • Alimahmoodi SS, Moayeri MH, Shataee JS. Air pollution (PM۱۰) estimation ...
  • Rezaei Rahimi N, Fouladi-Fard R, Rezvani Ghalhari M, et al. ...
  • Goudarzi G, Geravandi S, Saeidimehr S, et al. Estimation of ...
  • Pooyanmehr M, Khalvandpoor M. Correlation between harmful health effects attributed ...
  • Safari Z, Fouladi-Fard R, Vahedian M, et al. Health impact ...
  • Fard RF, Torkamani FD, Mahvi AH, et al. Health effects ...
  • Neisi A, Goudarzi G, Ahmadi Angali K, et al. Evaluation ...
  • Arami SA, Ownegh M, Mohammadian Behbahani A, et al. The ...
  • Hoff RM, Christopher SA. Remote sensing of particulate pollution from ...
  • Carmona JM, Gupta P, Lozano-García DF, et al. Spatial and ...
  • Gupta P, Doraiswamy P, Levy R, et al. Impact of ...
  • Van Donkelaar A, Martin RV, Park RJ. Estimating ground‐level PM۲.۵ ...
  • Aparicio G, Gerardino MP, Rangel MA. Gender gaps in birth ...
  • Chu Y, Liu Y, Li X, et al. A review ...
  • Park Y, Kwon B, Heo J, et al. Estimating PM۲.۵ ...
  • Hu X, Waller LA, Al-Hamdan MZ, et al. Estimating ground-level ...
  • Bouarar I, Wang X, Brasseur GP. Air Pollution in Eastern ...
  • Kabolizade M, Rangzan K. Estimation total dissolved solids and turbidity ...
  • Gharibzadeh M, Abadi ARS. Estimation of surface particulate matter (PM۲.۵ ...
  • Solgi E, Parsi Mehr M. Predicting and modeling of daily ...
  • Asrari E, Rock A. Modeling of carbon monoxide, ozone and ...
  • Gholizadeh MH, Amanollahi J, Rahimi F. Assessment of correlation between ...
  • Damascena AS, Yamasoe MA, Martins VS, et al. Exploring the ...
  • Viñas MJD, Gerardo BD, Medina RP. Forecasting PM۲.۵ and PM۱۰ ...
  • Kujawska J, Kulisz M, Oleszczuk P, et al. Machine learning ...
  • Plocoste T, Laventure S. Forecasting PM ۱۰ concentrations in the ...
  • Baddock MC, Bullard JE, Bryant RG. Dust source identification using ...
  • Broomandi P, Rashidi Y. The effect of dust storm on ...
  • Gharibi S, Shayesteh K. Application of Sentinel ۵ satellite imagery ...
  • Chu DA, Kaufman Y, Zibordi G, et al. Global monitoring ...
  • Che H, Yang L, Liu C, et al. Long-term validation ...
  • Téllez-Rojo MM, Rothenberg SJ, Texcalac-Sangrador JL, et al. Children's acute ...
  • Vu BN, Sánchez O, Bi J, et al. Developing an ...
  • Nguyen TNT, Luu VH, Pham VH, et al. Particulate matter ...
  • Carmona García JM. Satellite-derived data and ground-based measurements relationships for ...
  • Escudero M, Querol X, Ávila A, et al. Origin of ...
  • Rabiei-Dastjerdi H, Mohammadi S, Saber M, et al. Spatiotemporal analysis ...
  • Shin M, Kang Y, Park S, et al. Estimating ground-level ...
  • Guo Y, Tang Q, Gong D-Y, et al. Estimating ground-level ...
  • Mancilla Y, Hernandez Paniagua I, Mendoza A. Spatial differences in ...
  • Gupta P, Christopher SA. Particulate matter air quality assessment using ...
  • Benas N, Beloconi A, Chrysoulakis N. Estimation of urban PM۱۰ ...
  • Gupta A, Moniruzzaman M, Hande A, et al. Estimation of ...
  • Stirnberg R, Cermak J, Andersen H. An analysis of factors ...
  • Allabakash S, Lim S, Chong K-S, et al. Particulate matter ...
  • Amnuaylojaroen T. Prediction of PM۲.۵ in an urban area of ...
  • Zaman NA, Kanniah KD, Kaskaoutis DG. Estimating particulate matter using ...
  • نمایش کامل مراجع