A Novel Combination of Segmentation, Ensemble Clustering and Genetic Algorithm for Clustering Time Series
Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 233
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
این Paper در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-12-2_009
تاریخ نمایه سازی: 1 آبان 1403
Abstract:
Increasing the accuracy of time-series clustering while reducing execution time is a primary challenge in the field of time-series clustering. Researchers have recently applied approaches, such as the development of distance metrics and dimensionality reduction, to address this challenge. However, using segmentation and ensemble clustering to solve this issue is a key aspect that has received less attention in previous research. In this study, an algorithm based on the selection and combination of the best segments created from a time-series dataset was developed. In the first step, the dataset was divided into segments of equal lengths. In the second step, each segment is clustered using a hierarchical clustering algorithm. In the third step, a genetic algorithm selects different segments and combines them using combinatorial clustering. The resulting clustering of the selected segments was selected as the final dataset clustering. At this stage, an internal clustering criterion evaluates and sorts the produced solutions. The proposed algorithm was executed on ۸۲ different datasets in ۱۰ repetitions. The results of the algorithm indicated an increase in the clustering efficiency of ۳.۰۷%, reaching a value of ۶۷.۴۰. The obtained results were evaluated based on the length of the time series and the type of dataset. In addition, the results were assessed using statistical tests with the six algorithms existing in the literature.
Keywords:
Authors
Zahra Ghorbani
Edinburgh Business School, Heriot-Watt University, Edinburgh, Scotland (UK).
Ali Ghorbanian
Department of Industrial Engineering, Esfarayen University of Technology, Esfarayen, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :