سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Assessing the predictive performance of the Bagging algorithm for genomic selection

Publish Year: 1403
Type: Journal paper
Language: English
View: 61

This Paper With 7 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_KLST-12-2_006

Index date: 26 November 2024

Assessing the predictive performance of the Bagging algorithm for genomic selection abstract

The aim of the present study was to compare the predictive performance of the Bagging algorithm with other decision tree-based methods, including regression tree (RT), random forest (RF) and Boosting in genomic selection. A genome including ten chromosomes for 1,000 individuals on which 10,000 single nucleotide polymorphisms (SNP) were evenly distributed was simulated. QTL effects were assigned to 10% of the polymorphic SNPs, with effects sampled from a gamma distribution. Predictive performance measures including accuracy of prediction, reliability and bias were used to compare the methods. Computing time and memory requirements of the studied methods were also measured. In all methods studied, the accuracy of genomic evaluation increased following increase in the heritability level from 0.10 to 0.50. While RT was the most efficient user of time and memory, it was not recommended for genomic selection due to its poor predictive performance. The obtained results showed that the predictive performance of Bagging was equal to RF and higher than RT and Boosting. However, it required significantly higher computational time and memory requirements. Considering the overall performance, Bagging was recommended for genomic selection, especially when due to the size and structure of the genomic data, the use of RF is limited.

Assessing the predictive performance of the Bagging algorithm for genomic selection Keywords:

Assessing the predictive performance of the Bagging algorithm for genomic selection authors

Farhad Ghafouri-Kesbi

Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Abdollahi-Arpanahi, R., Morota, G., Valente, B.D., Kranis, A., Rosa, G.J.M., ...
Ahmadi, Z., Ghafouri-Kesbi, F., Zamani, P., ۲۰۲۱. Assessing the performance ...
Ashoori-Banaei, S., Ghafouri-Kesbi, F., Ahmadi, A., ۲۰۲۱. Comparison of regression tree-based ...
Budhlakoti, N., Kushwaha, A.K., Rai, A., Chaturvedi, K.K., Kumar, A., ...
Dekkers, J.C., ۲۰۰۴. Commercial application of marker-and gene-assisted selection in ...
de Sousa, I.C.D., Nascimento, M., Silva, G.N., Nascimento, A.C.C., Cruz, ...
Fernando, R.L., Grossman, M., ۱۹۸۹. Marker-assisted selection using best linear ...
Greenwell, B., Bradley, B., Cunningham, J., ۲۰۱۹. gbm: Generalized Boosted ...
Gianola, D., Weigel, K.A., Kramer, N., Stella, A., Schon, C.C., ...
González-Recio, O., Forni, S., ۲۰۱۱. Genome-wide prediction of discrete traits ...
Hastie, T.J., Tibshirani, R., Friedman, J., ۲۰۰۹. The Elements of ...
Hayes, B.J., Daetwyler, H.D., Bowman, P., Moser, G., Tier, B., ...
Hill, W.G., Robertson, A., ۱۹۶۸. Linkage disequilibrium in finite populations. ...
Howard, R., Carriquiry, A.L., Beavis, W.D., ۲۰۱۴. Parametric and nonparametric ...
Jafarzadeh, H., Mahdianpari, M., Gill, E., Mohammadimanesh, F., Homayouni, S., ...
James, G., Witten, D., Hastie, T., Tibshirani, R., ۲۰۱۳. An ...
Legarra, A., Reverter, A., ۲۰۱۸. Semi-parametric estimates of population accuracy ...
Liaw, A., Wiener, M., ۲۰۱۸. Breiman and Cutler’s random forests ...
Mohammadi-Chamachar, N., Hafezian, S.H., Honarvar, M., Farhadi, A., ۲۰۱۵. Effects ...
Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., ۲۰۰۱. Prediction of total ...
Oguto, J.O., Piepho, H.P., Schulz-Streeck, T., ۲۰۱۱. A comparison of ...
R Development Core Team., ۲۰۲۳. R: A language and environment ...
Spelman, R., Garrick, D., ۱۹۹۷. Utilization of marker assisted selection ...
Sahebalam, H., Gholizadeh, M., Hafezian, H., Ebrahimi, F., ۲۰۲۲. Evaluation ...
Technow, F., ۲۰۱۳. hypred: Simulation of genomic data in applied ...
Therneau, T., Atkinsonm., B., Ripley, B., ۲۰۱۹. rpart: Recursive partitioning ...
Valiati Barreto, C.A., Dias, K., de Sousa, I.C., Azevedo, C.F., ...
Wickham, H., ۲۰۱۸. pryr: Useful tools to pry back the ...
Zhang, A., Wang, H., Beyene, Y., Semagn, K., ۲۰۱۷. Effect ...
نمایش کامل مراجع