سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A Fast and Accurate Tree-based Approach for Anomaly Detection in Streaming Data

Publish Year: 1404
Type: Journal paper
Language: English
View: 70

This Paper With 16 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JECEI-13-1_017

Index date: 1 December 2024

A Fast and Accurate Tree-based Approach for Anomaly Detection in Streaming Data abstract

kground and Objectives: In this paper, a novel and efficient unsupervised machine learning algorithm named EiForestASD is proposed for distinguishing anomalies from normal data in data streams. The proposed algorithm leverages a forest of isolation trees to detect anomaly data instances. Methods: The proposed method EiForestASD incorporates an isolation forest as an adaptable detector model that adjusts to new data over time. To handle concept drifts in the data stream, a window-based concept drift detection is employed that discards only those isolation trees that are incompatible with the new concept. The proposed method is implemented using the Python programming language and the Scikit-Multiflow library.Results: Experimental evaluations were conducted on six real-world and two synthetic data streams. Results reveal that the proposed method EiForestASD reduces computation time by 19% and enhances anomaly detection rate by 9% compared to the baseline method iForestASD. These results highlight the efficacy and efficiency of the EiForestASD in the context of anomaly detection in data streams.Conclusion: The EiForestASD method handles concept change using an intelligent strategy where only those trees from the detector model incompatible with the new concept are removed and reconstructed. This modification of the concept drift handling mechanism in the EiForestASD significantly reduces computation time and improves anomaly detection accuracy.

A Fast and Accurate Tree-based Approach for Anomaly Detection in Streaming Data Keywords:

A Fast and Accurate Tree-based Approach for Anomaly Detection in Streaming Data authors

K. Moeenfar

Computer Engineering Department, Faculty of Engineering, University of Bojnord, Bojnord, Iran.

V. Kiani

Computer Engineering Department, Faculty of Engineering, University of Bojnord, Bojnord, Iran.

A. Soltani

Computer Engineering Department, Faculty of Engineering, University of Bojnord, Bojnord, Iran.

R. Ravanifard

Computer Engineering Department, Faculty of Engineering, University of Bojnord, Bojnord, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
R. Al-amri, R. K. Murugesan, M. Man, A. F. Abdulateef, ...
R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I. A. ...
M. Hosseini Shirvani, A. Akbarifar, “A survey study on intrusion ...
A. A. Cook, G. Mısırlı, Z. Fan, “Anomaly detection for ...
L. Qi, Y. Yang, X. Zhou, W. Rafique, J. Ma, ...
B. Steenwinckel, D. D. Paepe, S. V. Hautte, P. Heyvaert, ...
M. E. Villa-Pérez, M. Á. Álvarez-Carmona, O. Loyola-González, M. A. ...
A. Oloomi, H. Khanmirza, “Fault tolerance of RTMP protocol for ...
T. Lu, L. Wang, X. Zhao, “Review of anomaly detection ...
Z. Nouri, V. Kiani, H. Fadishei, “Rarity updated ensemble with ...
I. Souiden, M. N. Omri, Z. Brahmi, “A survey of ...
K. Yamanishi, J. Takeuchi, G. Williams, P. Milne, “On-line unsupervised ...
F. Rollo, C. Bachechi, L. Po, “Anomaly detection and repairing ...
C. Bachechi, F. Rollo, L. Po, “Detection and classification of ...
A. Shylendra, P. Shukla, S. Mukhopadhyay, S. Bhunia, A. R. ...
Y. Yang, C. Fan, L. Chen, H. Xiong, “IPMOD: An ...
F. Angiulli, F. Fassetti, “Detecting distance-based outliers in streams of ...
M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, Y. ...
S. Yoon, J. G. Lee, B. S. Lee, “NETS: extremely ...
M. J. Bah, H. Wang, M. Hammad, F. Zeshan, H. ...
R. Zhu, X. Ji, D. Yu, Z. Tan, L. Zhao, ...
T. Toliopoulos, A. Gounaris, “Explainable distance-based outlier detection in data ...
M. M. Breunig, H.-P. Kriegel, R. T. Ng, J. Sander, ...
D. Pokrajac, A. Lazarevic, L. J. Latecki, “Incremental local outlier ...
G. S. Na, D. Kim, H. Yu, “DILOF: Effective and ...
H. Yao, X. Fu, Y. Yang, O. Postolache, “An incremental ...
O. Alghushairy, R. Alsini, X. Ma, T. Soule, “A genetic-based ...
D. Barrish, J. Vuuren, “Enhancement of the local outlier factor ...
D. Apoji, K. Soga, “Soil clustering and anomaly detection based ...
L. Chen, W. Wang, Y. Yang, “CELOF: Effective and fast ...
L. Wan, W. K. Ng, X. H. Dang, P. S. ...
A. Bär, P. Casas, L. Golab, A. Finamore, “DBStream: An ...
N. A. Supardi, S. J. Abdulkadir, N. Aziz, “An evolutionary ...
C. Yin, S. Zhang, Z. Yin, J. Wang, “Anomaly detection ...
E. Vanem, A. Brandsæter, “Unsupervised anomaly detection based on clustering ...
R. A. A. Habeeb, F. Nasaruddin, A. Gani, M. A. ...
X. Wang, M. M. Ahmed, M. N. Husen, H. Tao, ...
C. H. Park, “Outlier and anomaly pattern detection on data ...
K. Gokcesu, M. M. Neyshabouri, H. Gokcesu, S. S. Kozat, ...
T. Barbariol, F. D. Chiara, D. Marcato, G. A. Susto, ...
S. C. Tan, K. M. Ting, T. F. Liu, “Fast ...
K. Wu, K. Zhang, W. Fan, A. Edwards, P. S. ...
F. T. Liu, K. M. Ting, Z. H. Zhou, “Isolation-based ...
Z. Ding, M. Fei, “an anomaly detection approach based on ...
M. U. Togbe, Y. Chabchoub, A. Boly, M. Barry, R. ...
A. H. Madkour, A. Elsayed, H. Abdel-Kader, “Historical isolated forest ...
G. Hannák, G. Horváth, A. Kádár, M. D. Szalai, “Bilateral-Weighted ...
Y. Liu, C. Liu, J. Li, Y. Sun, “Anomaly detection ...
M. E. A. Azz, A. Aljasmi, A, E. F. Seghrouchni, ...
Y. Lee, C. Park, N. Kim, J. Ahn, J. Jeong, ...
J. Li, K. Malialis, M. M. Polycarpou, “Autoencoder-based Anomaly Detection ...
M. Molan, A. Borghesi, D. Cesarini, L. Benini, A. Bartolini, ...
M. Pourreza, B. Mohammadi, M. Khaki, S. Bouindour, H. Snoussi, ...
P. Jiao, T. Li, Y. Xie, Y. Wang, W. Wang, ...
T. Yang, Y. Hu, Y. Li, W. Hu, Q. Pan, ...
M. Ravanbakhsh, M. Nabi, E. Sangineto, L. Marcenaro, C. Regazzoni, ...
J. Wang, J. Liu, J. Pu, Q. Yang, Z. Miao, ...
A. Srivastava, M. R. Bharti, “Hybrid machine learning model for ...
W. Ullah, T. Hussain, F. U. M. Ullah, M. Y. ...
Y. Karadayı, M. N. Aydin, A. S. Öğrenci, “A hybrid ...
M. U. Togbe et al., “Anomaly detection for data streams ...
Y. Yang, X. Yang, M. Heidari, M. A. Khan, G. ...
Y. Yang, S. Ding, Y. Liu, S. Meng, X. Chi, ...
Q. Li, Z. Yu, H. Xu, B. Guo, “Human-machine interactive ...
F. T. Liu, K. M. Ting, Z. H. Zhou, “Isolation ...
نمایش کامل مراجع