Parallel Incremental Mining of Regular-Frequent Patterns from WSNs Big Data
Publish Year: 1402
Type: Journal paper
Language: English
View: 60
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_JADM-11-4_012
Index date: 31 December 2024
Parallel Incremental Mining of Regular-Frequent Patterns from WSNs Big Data abstract
Efficient regular-frequent pattern mining from sensors-produced data has become a challenge. The large volume of data leads to prolonged runtime, thus delaying vital predictions and decision makings which need an immediate response. So, using big data platforms and parallel algorithms is an appropriate solution. Additionally, an incremental technique is more suitable to mine patterns from big data streams than static methods. This study presents an incremental parallel approach and compact tree structure for extracting regular-frequent patterns from the data of wireless sensor networks. Furthermore, fewer database scans have been performed in an effort to reduce the mining runtime. This study was performed on Intel 5-day and 10-day datasets with 6, 4, and 2 nodes clusters. The findings show the runtime was improved in all 3 cluster modes by 14, 18, and 34% for the 5-day dataset and by 22, 55, and 85% for the 10-day dataset, respectively.
Parallel Incremental Mining of Regular-Frequent Patterns from WSNs Big Data Keywords:
Parallel Incremental Mining of Regular-Frequent Patterns from WSNs Big Data authors
Sadegh Rahmani-Boldaji
Computer Engineering, Sheikh Bahaei University, Isfahan, Iran.
Mehdi Bateni
Computer Science and Computer Engineering, University of Isfahan, Khansar Campus, Isfahan, Iran.
Mahmood Mortazavi Dehkordi
MSE, University Canada West, Vancouver, Canada.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :