سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Designing a Visual Geometry Group-based Triad-Channel Convolutional Neural Network for COVID-19 Prediction

Publish Year: 1403
Type: Journal paper
Language: English
View: 100

This Paper With 13 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JADM-12-3_008

Index date: 31 December 2024

Designing a Visual Geometry Group-based Triad-Channel Convolutional Neural Network for COVID-19 Prediction abstract

Using intelligent approaches in diagnosing the COVID-19 disease based on machine learning algorithms (MLAs), as a joint work, has attracted the attention of pattern recognition and medicine experts. Before applying MLAs to the data extracted from infectious diseases, techniques such as RAT and RT-qPCR were used by data mining engineers to diagnose the contagious disease, whose weaknesses include the lack of test kits, the placement of the specialist and the patient pointed at a place and low accuracy. This study introduces a three-stage learning framework including a feature extractor by visual geometry group 16 (VGG16) model to solve the problems caused by the lack of samples, a three-channel convolution layer, and a classifier based on a three-layer neural network. The results showed that the Covid VGG16 (CoVGG16) has an accuracy of 96.37% and 100%, precision of 96.52% and 100%, and recall of 96.30% and 100% for COVID-19 prediction on the test sets of the two datasets (one type of CT-scan-based images and one type of X-ray-oriented ones gathered from Kaggle repositories).

Designing a Visual Geometry Group-based Triad-Channel Convolutional Neural Network for COVID-19 Prediction Keywords:

Designing a Visual Geometry Group-based Triad-Channel Convolutional Neural Network for COVID-19 Prediction authors

Seyed Alireza Bashiri Mosavi

Department of Electrical and Computer Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran.

Omid Khalaf Beigi

Department of Electrical and Computer Engineering, Kharazmi University, Tehran, Iran.

Arash Mahjoubifard

Department of Computer Engineering and Information Technology, University of Qom, Qom, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
N. Arora, A.K. Banerjee, and M.L. Narasu, “The role of ...
A. Scohy, A. Anantharajah, M. Bodéus, B. Kabamba-Mukadi, A. Verroken, ...
T. E. Miller, W. F. G. Beltran, A. Z. Bard, ...
S. Salehi, A. Abedi, S. Balakrishnan, and A. Gholamrezanezhad, “Coronavirus ...
M. M. Keikha, and Y. Kord Tamandani, “Breast Cancer Detection ...
E. Wu, K. Wu, D. Cox, and W. Lotter, “Conditional ...
Y. Yang, P. A. Fasching, M. Wallwiener, T. N. Fehm, ...
V. Despotovic, M. Ismael, M. Cornil, R. Mc Call, and ...
A. M. Ismael, and A. Şengür, “Deep learning approaches for ...
A. Jaiswal, N. Gianchandani, D. Singh, V. Kumar, and M. ...
Y. Pathak, P. K. Shukla, and K. V. Arya, “Deep ...
J. Schmidhuber, and S. Hochreiter, “Long short-term memory,” Neural Comput, ...
C. M. Bishop, “Mixture density networks”, ۱۹۹۴ ...
K. Simonyan, and A. Zisserman, “Very deep convolutional networks for ...
J. Deng, W. Dong, R. Socher, L. J. Li, K. ...
E. Soares, P. Angelov, S. Biaso, M. H. Froes, and ...
P. Angelov, and E. Soares, "Towards explainable deep neural networks ...
J. Micah Bennett, “SMART-CT-SCAN_BASED COVID۱۹_VIRUS_DETECTOR,” ۲۰۲۰. [Online]. Available:https://github.com/JordanMicahBennett/SMART-CT-SCAN_BASED COVID۱۹_VIRUS_DETECTOR ...
J. P. Cohen, P. Morrison, L. Dao, K. Roth, T. ...
D. P. Kingma, “Adam: A method for stochastic optimization,” arXiv ...
S. H. Khan, A. Sohail, M. M. Zafar, and A. ...
S. A. Bashiri Mosavi, M. Javaherian, and O. Khalaf Beigi, ...
نمایش کامل مراجع