سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A New Structure for Perceptron in Categorical Data Classification

Publish Year: 1403
Type: Journal paper
Language: English
View: 77

This Paper With 14 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JADM-12-3_007

Index date: 31 December 2024

A New Structure for Perceptron in Categorical Data Classification abstract

Artificial neural networks are among the most significant models in machine learning that use numeric inputs. This study presents a new single-layer perceptron model based on categorical inputs. In the proposed model, every quality value in the training dataset receives a trainable weight. Input data is classified by determining the weight vector that corresponds to the categorical values in it. To evaluate the performance of the proposed algorithm, we have used 10 datasets. We have compared the performance of the proposed method to that of other machine learning models, including neural networks, support vector machines, naïve Bayes classifiers, and random forests. According to the results, the proposed model resulted in a 36% reduction in memory usage when compared to baseline models across all datasets. Moreover, it demonstrated a training speed enhancement of 54.5% for datasets that contained more than 1000 samples. The accuracy of the proposed model is also comparable to other machine learning models.

A New Structure for Perceptron in Categorical Data Classification Keywords:

A New Structure for Perceptron in Categorical Data Classification authors

Fariba Taghinezhad

Department of Electrical and Computer Engineering, Yazd University, Yazd, Iran.

Mohammad Ghasemzadeh

Department of Electrical and Computer Engineering, Yazd University, Yazd, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
P. Dongare, S. Kannan, R. Garg, and S. S. Harsoor, ...
A. Agresti, An introduction to categorical data analysis. Hoboken, New ...
D. Jurafsky and J. H. Martin, “Speech and language processing: ...
G. Alfonso Perez and R. Castillo, “Categorical variable mapping considerations ...
J. T. Hancock and T. M. Khoshgoftaar, “Survey on categorical ...
A. R. Shabrandi, A. Rajabzadeh Ghatari, N. Tavakoli, M. Dehghan ...
J. Moeyersoms and D. Martens, “Including high-cardinality attributes in predictive ...
D. Reilly, M. Taylor, P. Fergus, C. Chalmers, and S. ...
A. Alexandridis, E. Chondrodima, N. Giannopoulos, and H. Sarimveis, “A ...
L. A. S. Cardona, H. D. Vargas-Cardona, P. Navarro González, ...
M. M. Arat, “Learning from high-cardinality categorical features in deep ...
D. B. Suits, “Use of dummy variables in regression equations,” ...
K. Potdar, T. S., and C. D., “A comparative study ...
D. Micci-Barreca, “A preprocessing scheme for high-cardinality categorical attributes in ...
C. Seger, “An investigation of categorical variable encoding techniques in ...
W. H. Riska, D. Permana, A. A. Putra, and Zilrahmi, ...
H. Cho and Y. Chung, “Clustering high-cardinality categorical data using ...
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. ...
J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors ...
A. Asuncion and D. Newman, UCI machine learning repository, ۲۰۰۷ ...
B. W. Matthews, “Comparison of the predicted and observed secondary ...
M. T. Hagan and M. B. Menhaj, “Training feedforward networks ...
R. Fernandes de Mello and M. Antonelli Ponti, “Statistical learning ...
G. H. John and P. Langley, “Estimating continuous distributions in ...
H. Zhang, B. Quost, and M.-H. Masson, “Cautious weighted random ...
K.-L. Du and M. N. S. Swamy, “Radial Basis Function ...
نمایش کامل مراجع