سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Advanced Stock Price Forecasting Using a 1D-CNN-GRU-LSTM Model

Publish Year: 1403
Type: Journal paper
Language: English
View: 86

This Paper With 17 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JADM-12-3_006

Index date: 31 December 2024

Advanced Stock Price Forecasting Using a 1D-CNN-GRU-LSTM Model abstract

This article proposes a novel hybrid network integrating three distinct architectures -CNN, GRU, and LSTM- to predict stock price movements. Here with Combining Feature Extraction and Sequence Learning and Complementary Strengths can Improved Predictive Performance. CNNs can effectively identify short-term dependencies and relevant features in time series, such as trends or spikes in stock prices. GRUs designed to handle sequential data. They are particularly useful for capturing dependencies over time while being computationally less expensive than LSTMs. In the hybrid model, GRUs help maintain relevant historical information in the sequence without suffering from vanishing gradient problems, making them more efficient for long sequences. LSTMs excel at learning long-term dependencies in sequential data, thanks to their memory cell structure. By retaining information over longer periods, LSTMs in the hybrid model ensure that important trends over time are not lost, providing a deeper understanding of the time series data. The novelty of the 1D-CNN-GRU-LSTM hybrid model lies in its ability to simultaneously capture short-term patterns and long-term dependencies in time series data, offering a more nuanced and accurate prediction of stock prices. The data set comprises technical indicators, sentiment analysis, and various aspects derived from pertinent tweets. Stock price movement is categorized into three categories: Rise, Fall, and Stable. Evaluation of this model on five years of transaction data demonstrates its capability to forecast stock price movements with an accuracy of 0.93717. The improvement of proposed hybrid model for stock movement prediction over existing models is 12% for accuracy and F1-score metrics.

Advanced Stock Price Forecasting Using a 1D-CNN-GRU-LSTM Model Keywords:

Hybrid deep neural network , 1D-CNN-GRU-LSTM network , Stock price movement forecasting , Tweet sentiment analysis , Technical indicators

Advanced Stock Price Forecasting Using a 1D-CNN-GRU-LSTM Model authors

Fatemeh Moodi

Department of Computer Engineering, Yazd University, Yazd, Iran.

Amir Jahangard Rafsanjani

Department of Computer Engineering, Yazd University, Yazd, Iran.

Sajjad Zarifzadeh

Department of Computer Engineering, Yazd University, Yazd, Iran.

Mohammad Ali Zare Chahooki

Department of Computer Engineering, Yazd University, Yazd, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
A. Pérez, "Forecasting and optimization of stock trades," University of ...
M. Polanco-Martínez, "Dynamic relationship analysis between NAFTA stock markets using ...
F. Fama, "The behavior of stock-market prices," The journal of ...
Zhang, X. Liang, A. Zhiyuli, S. Zhang, R. Xu, and ...
Shields, S. Ajour El Zein, and N. Vila Brunet, "An ...
K. Daradkeh, "A hybrid data analytics framework with sentiment convergence ...
Chen and H. He, "Stock prediction using convolutional neural network," ...
Pang, Y. Zhou, P. Wang, W. Lin, and V. Chang, ...
Cao and J. Wang, "Stock price forecasting model based on ...
Selvin, R. Vinayakumar, E. Gopalakrishnan, V. K. Menon, and K. ...
M. Nelson, A. C. Pereira, and R. A. De Oliveira, ...
B. Sezer and A. M. Ozbayoglu, "Algorithmic financial trading with ...
N. Bhandari, B. Rimal, N. R. Pokhrel, R. Rimal, K. ...
Faghihi Nezhad and B. Minaei Bidgoli, "Development of an ensemble ...
Zhang, S. Cui, Y. Xu, Q. Li, and T. Li, ...
Chen, "Stock Price Prediction Based on the Fusion of CNN-GRU ...
Song and H. Choi, "Forecasting stock market indices using the ...
E. Karim, M. Foysal, and S. Das, "Stock price prediction ...
Zhou, C. Zhou, and X. Wang, "Stock prediction based on ...
Rezaei, H. Faaljou, and G. Mansourfar, "Stock price prediction using ...
Gite, H. Khatavkar, K. Kotecha, S. Srivastava, P. Maheshwari, and ...
Nayak, M. M. Pai, and R. M. Pai, "Prediction models ...
Ji, J. Yu, K. Hu, J. Xie, and X. Ji, ...
Peng, P. H. M. Albuquerque, H. Kimura, and C. A. ...
Hoseinzade and S. Haratizadeh, "CNNpred: CNN-based stock market prediction using ...
A. Bakshi, P. R. Kolan, B. Behera, N. Kaushik, and ...
Russakovskyet al., "Imagenet large scale visual recognition challenge," International journal ...
Chen, M. Jiang, W.-G. Zhang, and Z. Chen, "A novel ...
Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation ...
Le, H. V. Ho, G. Lee, and S. Jung, "Application ...
Shen, Q. Tan, H. Zhang, P. Zeng, and J. Xu, ...
Ł. Kaiser, and I. Sutskever, “Neural gpus learn algorithms,” arXiv ...
Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study ...
E. Livieris, E. Pintelas, S. Stavroyiannis, and P. Pintelas, "Ensemble ...
Moodi and H. Saadatfar, "An improved K‐means algorithm for big ...
Doğan, Ö. Metin, E. Tek, S. Yumuşak, and K. Öztoprak, ...
Moodi, A. Jahangard-Rafsanjani, and S. Zarifzadeh, "A CNN-LSTM deep neural ...
Moodi, A. Jahangard-Rafsanjani, and S. Zarifzadeh, "Improving stock price prediction ...
W. Granger, "Strategies for modelling nonlinear time‐series relationships," Economic Record, ...
Zivot, J. Wang, E. Zivot, and J. Wang, "Rolling analysis ...
Wu, B. Green, X. Ben, and S. O'Banion, "Deep transformer ...
Moodi, A. Jahangard-Rafsanjani, S. Zarifzadeh, “Evaluation of feature selection performance ...
Taghian, A. Asadi, and R. Safabakhsh, "A reinforcement learning based ...
نمایش کامل مراجع