سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Anomaly Detection in Dynamic Graph Using Machine Learning Algorithms

Publish Year: 1403
Type: Journal paper
Language: English
View: 70

This Paper With 10 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JADM-12-3_004

Index date: 31 December 2024

Anomaly Detection in Dynamic Graph Using Machine Learning Algorithms abstract

Today, the amount of data with graph structure has increased dramatically. Detecting structural anomalies in the graph, such as nodes and edges whose behavior deviates from the expected behavior of the network, is important in real-world applications. Thus, in our research work, we extract the structural characteristics of the dynamic graph by using graph convolutional neural networks, then by using temporal neural network Like GRU, we extract the short-term temporalcharacteristics of the dynamic graph and by using the attention mechanism integrated with GRU, long-term temporal dependencies are considered. Finally, by using the neural network classifier, the abnormal edge is detected in each timestamp. Conducted experiments on the two datasets, UC Irvine messages and Digg with three baselines, including Goutlier, Netwalk and CMSketch illustrate our model outperform existing methods in a dynamic graph by 10 and 15% onaverage on the UCI and Digg datasets respectively. We also measured the model with AUC and confusion matrix for 1, 5, and 10 percent anomaly injection.

Anomaly Detection in Dynamic Graph Using Machine Learning Algorithms Keywords:

Anomaly Detection in Dynamic Graph Using Machine Learning Algorithms authors

Pouria Rabiei

Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.

Nosratali Ashrafi-Payaman

Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
M. Khazaei, and N. Ashrafi-Payaman. "An Unsupervised Anomaly Detection Model ...
V. Chandola, A. Banerjee, and V. Kumar. "Anomaly detection: A ...
V. Yepmo, G. Smits, and O. Pivert. "Anomaly explanation: A ...
A. Sgueglia, A. Di Sorbo, C. Aaron Visaggio, and G. ...
C. Aggarwal, Y. Zhao, and S. Yu Philip. "Outlier detection ...
D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra. "Spotlight: ...
S. Ranshous, S. Harenberg, K. Sharma, and N. F. Samatova. ...
E. Manzoor, M. Sadegh Milajerdi, and L. Akoglu. "Fast memory-efficient ...
K. Sricharan, and K. Das. "Localizing anomalous changes in time-evolving ...
W. Yu, W. Cheng, C. Aggarwal, K. Zhang, H. Chen, ...
Y. Liu, S. Pan, Y. Guang Wang, F. Xiong, L.Wang, ...
L. Zheng, Z. Li, J. Li, Z. Li, and J. ...
C. Yang, L. Zhou, H. Wen, Z. Zhou, and Y. ...
L. Cai, Z. Chen, C. Luo, J. Gui, J. Ni, ...
J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, ...
B. Jiandong, J. Zhu, Y. Song, L. Zhao, Z. Hou, ...
A. Longa, V. Lachi, G. Santin, M. Bianchini, B. Lepri, ...
Z. Yang, G. Zhang, J. Wu, J. Yang, Q. Sheng, ...
J. Skarding, B. Gabrys, and K. Musial. "Foundations and modeling ...
C. Li, Y. Liu, and L. Zou. "DynGCN: A dynamic ...
W. Hamilton, Z. Ying, and J. Leskovec. "Inductive representation learning ...
A. Deng, and B. Hooi. "Graph neural network-based anomaly detection ...
R. Morshedi, S. M. Matinkhah, and M. T. Sadeghi, "Intrusion ...
نمایش کامل مراجع