سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

PTRP: Title Generation Based On Transformer Models

Publish Year: 1403
Type: Journal paper
Language: English
View: 80

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JADM-12-3_001

Index date: 31 December 2024

PTRP: Title Generation Based On Transformer Models abstract

Text summarization has become one of the favorite subjects of researchers due to the rapid growth of contents. In title generation, a key aspect of text summarization, creating a concise and meaningful title is essential as it reflects the article's content, objectives, methodologies, and findings. Thus, generating an effective title requires a thorough understanding of the article. Various methods have been proposed in text summarization to automatically generate titles, utilizing machine learning and deep learning techniques to improve results. This study aims to develop a title generation system for scientific articles using transformer-based methods to create suitable titles from article abstracts. Pre-trained transformer-based models like BERT, T5, and PEGASUS are optimized for constructing complete sentences, but their ability to generate scientific titles is limited. We have attempted to improve this limitation by presenting a proposed method that combines different models along with a suitable dataset for training. To create our desired dataset, we collected abstracts and titles of articles published on the ScienceDirect.com website. After performing preprocessing on this data, we developed a suitable dataset consisting of 50,000 articles. The results from the evaluations of the proposed method indicate more than 20% improvement based on various ROUGE metrics in the generation of scientific titles. Additionally, an examination of the results by experts in each scientific field revealed that the generated titles are also acceptable to these specialists.

PTRP: Title Generation Based On Transformer Models Keywords:

PTRP: Title Generation Based On Transformer Models authors

Davud Mohammadpur

Computer Department, University of Zanjan, Zanjan, Iran.

Mehdi Nazari

Computer Department, University of Zanjan, Zanjan, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
N. Nazari, and M. A. Mahdavi, "A survey on automatic ...
D. Radev, E. Hovy, and K. McKeown, “Introduction to the ...
M. Zhang, G. Zhou, W. Yu, N. Huang, and W. ...
S. Mehrabi, S. A. Mirroshandel, and H. Ahmadifar, “DeepSumm: A ...
K. Kaku, M. Kikuchi, T. Ozono, and T. Shintani, “Development ...
W. Li, X. Xiao, Y. Lyu, and Y. Wang, “Improving ...
M. Molaei, D. Mohamadpur, "Distributed Online Pre-Processing Framework for Big ...
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, ...
S. Islam, H. Elmekki, A. Elsebai, J. Bentahar, N. Drawel, ...
J. Zhang, Y. Zhao, M. Saleh, and P. Liu, “Pegasus: ...
C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, ...
M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, ...
T. Zhang, I. C. Irsan, F. Thung, D. Han, D. ...
F. Zhang, J. Liu, Y. Wan, X. Yu, X. Liu, ...
F. Zhang, X. Yu, J. Keung, F. Li, Z. Xie, ...
T. Zhang, I. C. Irsan, F. Thung, D. Han, D. ...
K. Liu, G. Yang, X. Chen, and C. Yu, "Sotitle: ...
S. Abdel-Salam, and A. Rafea, “Performance study on extractive text ...
J. Pennington, R. Socher, and C. D. Manning, “Glove: Global ...
S. Bhargav, A. Choudhury, S. Kaushik, R. Shukla, and V. ...
C. Y. Lin, “Rouge: A package for automatic evaluation of ...
نمایش کامل مراجع