Particle Swarm Optimization algorithm based on Diversified Artificial Particles (PSO-DAP)
Publish place: 11th Intelligent Systems Conference
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,472
This Paper With 8 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
ICS11_269
Index date: 6 October 2013
Particle Swarm Optimization algorithm based on Diversified Artificial Particles (PSO-DAP) abstract
Speed of convergence in the PSO is very high, and this issue causes to the algorithm can't investigate search space truly, When diversity of the population decreasing, all the population start to liken together and the algorithm converges to local optimal swiftly. In this paper we implement a new idea for better control of the diversity and have a good control of the algorithm's behavior between exploration and exploitations phenomena to preventing premature convergence. In our approach we have control on diversity with generating diversified artificial particles (DAP) and injection them to the population by a particular mechanism when diversity lessening, named Particle Swarm Optimization algorithm based on Diversified Artificial Particles (PSO-DAP). The performance of this approach has been tested on the set of ten standard benchmark problems and the results are compared with the original PSO algorithm in two models, Local ring and Global star topology. The numerical results show that the proposed algorithm outperforms the basic PSO algorithms in all the test cases taken in this study
Particle Swarm Optimization algorithm based on Diversified Artificial Particles (PSO-DAP) Keywords:
Particle Swarm Optimization (PSO) Algorithm , Population Diversity and Premature Convergence
Particle Swarm Optimization algorithm based on Diversified Artificial Particles (PSO-DAP) authors
Omid Mohamad Nezami
Bijar Branch, Islamic Azad University, Bijar, Iran
Anvar Bahrampour
Computer Engineering Department, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran, Anvar
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :