سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Comparative Analysis of Tree-Based Machine Learning Algorithms on Thyroid Disease Prediction Using ROS Technique and Hyperparameter Optimization

Publish Year: 1403
Type: Journal paper
Language: English
View: 80

This Paper With 11 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_JADM-12-4_005

Index date: 30 January 2025

Comparative Analysis of Tree-Based Machine Learning Algorithms on Thyroid Disease Prediction Using ROS Technique and Hyperparameter Optimization abstract

Thyroid disease is common worldwide and early diagnosis plays an important role in effective treatment and management. Utilizing machine learning techniques is vital in thyroid disease diagnosis. This research proposes tree-based machine learning algorithms using hyperparameter optimization techniques to predict thyroid disease. The thyroid disease dataset from the UCI Repository is benchmarked to evaluate the performance of the proposed algorithms. After data preprocessing and normalization steps, data balancing has been applied to the data using the random oversampling (ROS) technique. Also, two methods of grid search (GS) and random search (RS) have been employed to optimize hyperparameters. Finally, employing Python software, various criteria were used to evaluate the performance of proposed algorithms such as decision tree, random forest, AdaBoost, and extreme gradient boosting. The results of the simulations indicate that the Extreme Gradient Boosting (XGB) algorithm with the grid search method outperforms all the other algorithms, obtaining an impressive accuracy, AUC, sensitivity, precision, and MCC of 99.39%, 99.97%, 98.85%, 99.40%, 98.79%, respectively. These results demonstrated the potential of the proposed method for accurately predicting thyroid disease.

Comparative Analysis of Tree-Based Machine Learning Algorithms on Thyroid Disease Prediction Using ROS Technique and Hyperparameter Optimization Keywords:

Comparative Analysis of Tree-Based Machine Learning Algorithms on Thyroid Disease Prediction Using ROS Technique and Hyperparameter Optimization authors

Elahe Moradi

Department of Electrical and Computer Engineering, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
‎ K. Geetha and S. Baboo, “An Empirical Model for ...
M. Pal, S. Parija, and G. Panda, “Enhanced Prediction of ...
R. H. Agarwal, S. Degadwala, and D. Vyas, “Predictive Modeling ...
N. Jothi, N. A. Rashid, and W. Husain, “Data Mining ...
D. Asif, M. Bibi, M. S. Arif, and A. Mukheimer, ...
M. Ramya and P. V. S. Kumar, “PREDICTION AND PROVIDING ...
V. Prasad, T. S. Rao, and M. S. Babu, “Thyroid ...
T. Khan, “Application of Two-Class Neural of Thyroid Disease,”, ۱۱th ...
P. Kumari et al., “Explainable artificial intelligence and machine learning ...
R. Chaganti, F. Rustam, I. De La Torre Díez, J. ...
S. S. Islam, Md. S. Haque, M. S. U. Miah, ...
M. Hosseinzadeh et al., “A multiple multilayer perceptron neural network ...
M. H. Alshayeji, “Early Thyroid Risk Prediction by Data Mining ...
S. Razia, P. SwathiPrathyusha, N. V. Krishna, and N. S. ...
G. Mollica et al., “Classification of Thyroid Diseases Using Machine ...
S. Dalal et al., “Enhancing thyroid disease prediction with improved ...
P. Poudel, A. Illanes, E. J. G. Ataide, N. Esmaeili, ...
W. Song et al., “Multitask Cascade Convolution Neural Networks for ...
J. A. Chandio, G. A. Mallah, and N. A. Shaikh, ...
X. Zhao et al., “Automatic Thyroid Ultrasound Image Classification Using ...
E. Moradi, “A Data-Driven based Robust Multilayer Perceptron Approach for ...
F. Kamalov, H.-H. Leung, and A. K. Cherukuri, “Keep it ...
L. Aversano et al., “Thyroid Disease Treatment prediction with machine ...
R. Jha, V. Bhattacharjee, and A. Mustafi, “Increasing the Prediction ...
T. R. Mahesh et al., “AdaBoost Ensemble Methods Using K-Fold ...
Y. Chen, D. Li, X. Zhang, J. Jin, and Y. ...
K. Sumwiza, C. Twizere, G. Rushingabigwi, P. Bakunzibake, and P. ...
T. Agrawal, Hyperparameter Optimization in Machine Learning: Make Your Machine ...
Agrawal, T.; Agrawal, T. Hyperparameter optimization using scikit-learn. In Hyperparameter ...
J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” ...
S. M. Rostami and M. Ahmadzadeh, “Extracting Predictor Variables to ...
D. Chicco and G. Jurman, “The Matthews correlation coefficient (MCC) ...
نمایش کامل مراجع