سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

On the subspace distance of the subspace codes

Publish Year: 1404
Type: Journal paper
Language: English
View: 59

This Paper With 12 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_ASYAZDT-12-1_006

Index date: 2 February 2025

On the subspace distance of the subspace codes abstract

Let \mathcal{P}_q(n) be the set of all subspaces in the vector space \mathbb{F}_q^n. There is a subspace distance d_S(U,V) between any two subspaces U and V. A subspace code is also a subset of \mathcal{P}_q(n). It is known that d_S(U,V)\geq d_H(\nu(\pi U),\nu(\pi V)), where \pi\in S_n, \nu(U) denotes the pivot vector of E(U) and E(U) is the reduced row echelon form of the generator matrix of U. In this paper, we show that if E(U) and E(V) have at most one non-zero entry in each rows and each columns then the equality holds. Moreover, we introduce the sets \mathcal{G}_{U,V}=\{\pi\in S_n\mid d_S(U,V)=d_H(\nu(\pi U),\nu(\pi V))\} for any U,V\in\mathcal{P}_q(n) and examine them in the spaces \mathcal{P}_2(4), \mathcal{P}_2(5), \mathcal{P}_2(6) and \mathcal{P}_3(4). It is shown that the groups 1, \mathbb{Z}_2, \mathbb{Z}_2\times \mathbb{Z}_2, S_3, S_4 and 1, \mathbb{Z}_2, \mathbb{Z}_2\times \mathbb{Z}_2, S_3, D_8, S_3\times \mathbb{Z}_2, S_4, S_5 appears between these sets in \mathcal{P}_2(4) and \mathcal{P}_2(5), respectively. Moreover, the groups 1, \mathbb{Z}_2, \mathbb{Z}_2\times \mathbb{Z}_2, S_3, D_8, \mathbb{Z}_2\times \mathbb{Z}_2 \times \mathbb{Z}_2, S_3\times \mathbb{Z}_2, D_8\times \mathbb{Z}_2, S_4, S_3\times S_3, S_4\times \mathbb{Z}_2, (S_3\times S_3):2, S_5, S_6 and 1, \mathbb{Z}_2, \mathbb{Z}_2\times \mathbb{Z}_2, S_3, D_8, S_4 appears between these sets in \mathcal{P}_2(6) and \mathcal{P}_3(4), respectively.

On the subspace distance of the subspace codes Keywords:

On the subspace distance of the subspace codes authors

Seyedeh Hawra Sadrolhoffaz

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran

Reza Kahkeshani

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
P. J. Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, ...
W. C. Huffman, J. -L. Kim and P. Solé, Concise ...
S. Kurz, Construction and bounds for subspace codes, (۲۰۲۳) arXiv:۲۱۱۲.۱۱۷۶۶v۲ ...
S. Ling and C. Xing, Coding Theory, A First Course, ...
F. J. MacWilliams and N. J. A. Sloane, The Theory ...
N. Raviv, Subspace Codes and Distributed Storage Codes, PhD thesis, ...
H. Zhang and C. Tang, Further constructions of large cyclic ...
F. Zullo, Multi-orbit cyclic subspace codes and linear sets, Finite ...
نمایش کامل مراجع