سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Machine Learning Techniques for Gully Erosion Susceptibility Mapping (Case Study: Mukhtaran Watershed, South Khorasan Province, Iran)

Publish Year: 1404
Type: Journal paper
Language: English
View: 74

This Paper With 13 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_SUER-5-3_006

Index date: 25 February 2025

Machine Learning Techniques for Gully Erosion Susceptibility Mapping (Case Study: Mukhtaran Watershed, South Khorasan Province, Iran) abstract

Gully erosion, a significant environmental issue, can lead to severe consequences like soil loss, habitat destruction, and water pollution. To mitigate its impact, accurate mapping of land sensitivity to gully erosion is crucial. Machine learning models offer a powerful approach to predict and map gully erosion susceptibility. This study focuses on the Mukhtaran basin in South Khorasan province, Iran. By employing various machine learning techniques, including GLM, GBM, CTA, ANN, SRE, FDA, MARS, RF, and MaxEnt, the researchers aimed to identify the most suitable model for predicting gully erosion. Twenty-two environmental factors were selected and analyzed, with a focus on physiographic, climatic, hydrological, soil, land surface/cover, and geological variables. The results showed that the random forest (RF) and ensemble (ESMs) models demonstrated the highest accuracy in predicting gully erosion susceptibility, with a TSS index of 0.97. Sensitivity analysis revealed that the digital elevation model, soil electrical conductivity, bare soil percentage, land unit components, geology, runoff coefficient, and maximum storage capacity were the most influential factors. The study emphasizes the potential of machine learning models in generating accurate gully erosion susceptibility maps. However, further research is needed to explore additional factors and improve data quality. By combining topographic/hydrologic indices with machine learning models, more precise estimates of gully paths can be obtained for use in process-based models.

Machine Learning Techniques for Gully Erosion Susceptibility Mapping (Case Study: Mukhtaran Watershed, South Khorasan Province, Iran) Keywords:

Machine Learning Techniques for Gully Erosion Susceptibility Mapping (Case Study: Mukhtaran Watershed, South Khorasan Province, Iran) authors

Javad Momeni Damaneh

Department of Natural Resources Engineering, Agriculture and Natural Resources Faculty, Hormozgan University, Bandarabbas, Iran

Hadi Memarian

Department of Watershed Management, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran

Ali akbar Safdari

Department of Natural Resources Engineering, Natural Resources Faculty, Tehran University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Amiri, M., Pourghasemi, H.R., Ghanbarian, G.A. & Afzali, S.F., ۲۰۱۹. ...
Anderson, R.L., Rowntree, K.M. & Le Roux, J.J., ۲۰۲۱. An ...
Angileri, S.E., Conoscenti, C., Hochschild, V., Marker, M., Rotigliano, E. ...
Arabameri, A., Pradhan, B., Rezaei, K. & Conoscenti, C., ۲۰۱۹. ...
Bastola, S., Dialynas, Y.G., Bras, R. L., Noto, L.V. & ...
Damaneh, J.M., Ahmadi, J., Rahmanian, S., Sadeghi, S.M.M., Nasiri, V. ...
Fielding, A.H. & Bell, J.F., ۱۹۹۷. A review of methods ...
Galton, F., ۱۸۹۲. Finger prints (No. ۵۷۴۹۰-۵۷۴۹۲). Macmillan and Company ...
Gao, Y., Zhu, B., Zhou, P., Tang, J.L., Wang, T. ...
Garosi, Y., Sheklabadi, M., Pourghasemi, H.R., Besalatpour, A.A., Conoscenti, C.& ...
Garosi, Y., Sheklabadi, M., Conoscenti, C., Pourghasemi, H.R. & Van ...
Gayen, A., Pourghasemi, H.R., Saha, S., Keesstra, S. & Bai, ...
Gomez Gutierrez, A., Schnabel, S. & FelicIsimo, A.M., ۲۰۰۹. Modelling ...
Gumus, M. & Kiran, M.S., ۲۰۱۷. Crude oil price forecasting ...
Kantardzic, M.E.H.M.E.D., ۲۰۱۱. Data mining: concepts, models, methods and algorithms, ...
Kuhnert, P.M., Henderson, A.K., Bartley, R. & Herr, A., ۲۰۱۰. ...
Lei, X., Chen, W., Avand, M., Janizadeh, S., Kariminejad, N., ...
Li, C. & Pan, C., ۲۰۱۸. The relative importance of ...
Liu, J., Gao, G., Wang, S., Jiao, L., Wu, X. ...
Luffman, I. E., Nandi, A. & Spiegel, T., ۲۰۱۵. Gully ...
Luo, D., Caldas, M.M. & Goodin, D.G., ۲۰۲۱. Estimating environmental ...
Mahala, A., ۲۰۲۰. Land degradation processes of Silabati river basin, ...
Majhi, A., Nyssen, J. & Verdoodt, A., ۲۰۲۱. What is ...
Marker, M., Pelacani, S. & Schroder, B.A., ۲۰۱۱. functional entity ...
Mrad, D., Boukhari, S., Dairi, S. & Djebbar, Y., ۲۰۲۴. ...
Mohebzadeh, H., Biswas, A., Rudra, R. & Daggupati, P., ۲۰۲۲. ...
Momeni Damaneh, J., Ahmadi, J. & Jafarpour Chekab, Z., ۲۰۲۳b. ...
Momeni Damaneh, J., Tajbakhsh, S.M., Ahmadi, J. & safdari, A.A., ...
Momeni Damaneh, J., Tajbakhsh, S.M., Ahmadi, J. & Safdari, A.A., ...
Pourghasemi, H.R., Sadhasivam, N.,Kariminejad, N. & Collins, A.L., ۲۰۲۰. Gully ...
Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R. & Feizizadeh, ...
Roy, J. & Saha, S.,۲۰۲۱. Integration of artificial intelligence with ...
Senanayake, S. & Pradhan, B., ۲۰۲۲. Predicting soil erosion susceptibility ...
Setargie, T.A., Tsunekawa, A., Haregeweyn, N., Tsubo, M., Fenta, A.A., ...
Shruthi, R.B., Kerle, N., Jetten, V. & Stein, A., ۲۰۱۴. ...
Smeeton, N.C., ۱۹۸۵. Early history of the kappa statistic. Biometrics, ...
Soleimanpour, S.M., Pourghasemi, H.R. & Zare, M., ۲۰۲۱. A comparative ...
Swets, J. A.,۱۹۸۸. Measuring the accuracy of diagnostic systems. Science, ...
Thuiller, W., Lafourcade, B., Engler, R. & Araujo, M.B., ۲۰۰۹. ...
Vanmaercke, M., Poesen, J., Van Mele, B., Demuzere, M., Bruynseels, ...
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, ...
Yi, Y.J.X., Cheng, Z.F., Yang, S. & Zhang. H., ۲۰۱۶. ...
Zabihi, M., Mirchooli, F., Motevalli, A., Darvishan, A.K., Pourghasemi, H.R., ...
Zhang, X., Wenhong, C., Qingchao, G. & Sihong, W., ۲۰۱۰. ...
Zhang, X., Fan, J., Liu, Q.& Xiong, D.,۲۰۱۸. The contribution ...
Zhao, G., Mu, X., Wen, Z., Wang, F. & Gao, ...
نمایش کامل مراجع