Forecasting the PEV Owner Reaction to the Electricity Price Based on the Customer Acceptance Index
Publish place: Conference on Smart Electrical Grids Technology (SEGT2012)
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,180
This Paper With 5 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
SEGT01_051
Index date: 24 November 2013
Forecasting the PEV Owner Reaction to the Electricity Price Based on the Customer Acceptance Index abstract
Concerns about the environment and green energy brings a huge development opportunity to plug-in electric vehicles (PEVs). PEVs have an outlook to enhance thefunctionalities of the power grid. Using PEVs, lets us feed power from the vehicle’s battery packs back to the grid or topull power from the grid to recharge the batteries. It means thatwe have a bidirectional flow of power between the vehicle andthe grid. PEVs improves the social welfare by reducing thecustomer costs. The most important point in using a vehicle to grid (V2G) is to evaluate the behavior of the plug-in hybridelectric vehicle (PEV) owners and estimate their acceptancefacing the demand side managements programs (DSM). In this paper, a mathematical model is presented for evaluating the reaction of PEV owners in response to electricity price. This method allows the utilities to have a short term scheduling in order to balance the available power and demand utilizing the PEVs.
Forecasting the PEV Owner Reaction to the Electricity Price Based on the Customer Acceptance Index Keywords:
Forecasting the PEV Owner Reaction to the Electricity Price Based on the Customer Acceptance Index authors
M. H. Amini
Department of Electrical and Computer Engineering , Tarbiat Modares University
M. Parsa Moghaddam
Department of Electrical and Computer Engineering , Tarbiat Modares University
E. Heydarian Forushani
Department of Electrical and Computer Engineering , Tarbiat Modares University
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :