Sybil Attack Detection: Improving Security of WSNs for Smart Power Grid Application
Publish place: Conference on Smart Electrical Grids Technology (SEGT2012)
Publish Year: 1391
Type: Conference paper
Language: English
View: 1,120
This Paper With 6 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
SEGT01_057
Index date: 24 November 2013
Sybil Attack Detection: Improving Security of WSNs for Smart Power Grid Application abstract
For a large number of sensor network applications security is crucial, especially if the sensor network protects or monitors critical infrastructures such as electric powerinfrastructure. Smart grid revolutionizes the current electric power infrastructure by the use of wireless sensor networks.Sybil attack is one of the most disrupting attacks in the contextof wireless sensor networks. In this attack a malicious node forges multiple identities and therefore disrupts many networkprotocols such as routing, voting, data aggregation and misbehavior detection. This attack can make several forms ofattacks possible. It is also problematic for protocols that rely on voting schemes. Therefore a security mechanism against thisattack for wireless sensor networks is mandatory. In this paper we introduced a novel approach called SDTM (Sybil attack Detection using Traffic Monitoring) in a neighborbaseddetection manner to detect such attacks. This approach is based on the traffic density around nodes and uses statisticalmethods to detect the malicious nodes. For simulating our network we used OMNeT++ simulator. After 80 simulations the proposed mechanism (SDTM) achieved a 95.13% detection rate and a 2.29% misdetection rate. we have shown that the occurrence of a Sybil attack using this method is detectable
Sybil Attack Detection: Improving Security of WSNs for Smart Power Grid Application Keywords:
Sybil Attack Detection: Improving Security of WSNs for Smart Power Grid Application authors
Shahrzad Golestani Najafabadi
Kerman Graduate University of Technology
Hamid Reza Naji
Kerman Graduate University of Technology
Ali Mahani
Shahid Bahonar University
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :