Closeness of Lindley distribution to an exponential distribution with the presence of outliers
Publish Year: 1404
Type: Journal paper
Language: English
View: 45
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- I'm the author of the paper
Export:
Document National Code:
JR_IJNAA-16-7_015
Index date: 10 March 2025
Closeness of Lindley distribution to an exponential distribution with the presence of outliers abstract
The problem of distinguishing between distributions is always important. It becomes more complicated when data is contaminated by outliers. Here, we use two well-known Lindley and exponential distributions infected by outliers. The closeness of the Lindley distribution in comparison with the exponential distribution with outliers is discussed in this research. Three ways such as likelihood ratio, asymptotic likelihood ratio tests and minimum Kolmogorov distance are used to select the proper fitted model for a real data set. We perform Monte Carlo simulation to obtain the probability of correct selection for various values of sample sizes and parameters based on the best criteria in the distributions. In general, it has been seen that the Lindley distribution is closer to exponential distribution contaminated by outliers based on the likelihood ratio and Kolmogorov criteria. An actual example of real data is used to see the behaviour of the distributions.
Closeness of Lindley distribution to an exponential distribution with the presence of outliers Keywords:
Lindley Distribution , Exponential distribution , Outliers , Likelihood ratio test , Kolmogorov distance , Probability of correct selection , Monte Carlo simulation
Closeness of Lindley distribution to an exponential distribution with the presence of outliers authors
Parviz Nasiri
Department of Statistics, Payame Noor University of Tehran, Tehran-Iran
Mehdi Jabbari Nooghabi
Department of Statistics, Ferdowsi University of Mashhad, Mashhad-Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :