سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

A Deep Learning Approach Using Convolutional Neural Networks for Enhanced IoT Security and Governance

Publish Year: 1403
Type: Conference paper
Language: Persian
View: 42

This Paper With 10 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

CECCONF25_025

Index date: 10 March 2025

A Deep Learning Approach Using Convolutional Neural Networks for Enhanced IoT Security and Governance abstract

This article presents a novel approach to enhancing security and governance in smart cities by leveraging a hybrid **Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM)** model tailored for Internet of Things (IoT) systems. With the rapid expansion of IoT devices in urban environments, smart cities face unique challenges in managing real-time data and detecting anomalies to prevent security threats. Traditional methods struggle to capture both spatial and temporal patterns essential for effective threat detection and predictive maintenance in such dynamic settings. Our proposed CNN-LSTM method combines CNN's spatial feature extraction capabilities with LSTM's ability to process sequential data, achieving an impressive accuracy of ۹۳% in anomaly detection. This model not only enhances proactive threat response but also enables efficient resource allocation, making it a robust solution for sustainable and secure IoT governance in smart green cities.

A Deep Learning Approach Using Convolutional Neural Networks for Enhanced IoT Security and Governance Keywords:

A Deep Learning Approach Using Convolutional Neural Networks for Enhanced IoT Security and Governance authors

Ali Zolfaghari Bengar

Islamic Azad University of Central Tehran Branch (IAUCTB)

Mohammad Hosein Poornoori

Islamic Azad University of Central Tehran Branch (IAUCTB)

Mohammad Sohrabi

Islamic Azad University of Central Tehran Branch (IAUCTB)

مقاله فارسی "A Deep Learning Approach Using Convolutional Neural Networks for Enhanced IoT Security and Governance" توسط Ali Zolfaghari Bengar، Islamic Azad University of Central Tehran Branch (IAUCTB)؛ Mohammad Hosein Poornoori، Islamic Azad University of Central Tehran Branch (IAUCTB)؛ Mohammad Sohrabi، Islamic Azad University of Central Tehran Branch (IAUCTB) نوشته شده و در سال 1403 پس از تایید کمیته علمی بیست و پنجمین کنفرانس ملی علوم و مهندسی کامپیوتر و فناوری اطلاعات پذیرفته شده است. کلمات کلیدی استفاده شده در این مقاله Convolutional Neural Networks, IoT Security, Smart Cities, Anomaly Detection, Long Short-Term Memory, Deep Learning, Network Analysis هستند. این مقاله در تاریخ 20 اسفند 1403 توسط سیویلیکا نمایه سازی و منتشر شده است و تاکنون 42 بار صفحه این مقاله مشاهده شده است. در چکیده این مقاله اشاره شده است که This article presents a novel approach to enhancing security and governance in smart cities by leveraging a hybrid **Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM)** model tailored for Internet of Things (IoT) systems. With the rapid expansion of IoT devices in urban environments, smart cities face unique challenges in managing real-time data and detecting anomalies to prevent security threats. Traditional methods ... . برای دانلود فایل کامل مقاله A Deep Learning Approach Using Convolutional Neural Networks for Enhanced IoT Security and Governance با 10 صفحه به فرمت PDF، میتوانید از طریق بخش "دانلود فایل کامل" اقدام نمایید.