سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Application of Radial Basis Function Neural Networks in Modeling of Nonlinear Systems with Deadband

Publish Year: 1392
Type: Conference paper
Language: English
View: 985

This Paper With 5 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

ICEEE05_313

Index date: 24 November 2013

Application of Radial Basis Function Neural Networks in Modeling of Nonlinear Systems with Deadband abstract

Presence of dead-band in engineering process decreases performance of the system. Modeling of systems with such nonlinear properties is a key factor in model-based control of this phenomenon to mitigate its effect which is a challenging task in conventional mathematic methods. Because of capability in learning, adaptation, and classification, neural networks which can approximate any nonlinear continuous function arbitrarily well on a compact set is a good choice in this regard. In this paper application of radial basis neural networks in such systems is investigated. The nonlinear static part of the system first can be decoupled from linear dynamic part and then is modeled using radial basis function (RBF) network. While the dynamic linear part of the system can be identified using linear models. Results show that RBF can capture well the key model of the systems with dead band.

Application of Radial Basis Function Neural Networks in Modeling of Nonlinear Systems with Deadband Keywords:

Application of Radial Basis Function Neural Networks in Modeling of Nonlinear Systems with Deadband authors

M.A Daneshwar

Universiti Sains Malaysia

Norlaili Mohd Noh

Universiti Sains Malaysia

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
_ _ _ New ...
Hao Wang, Youngseok Oh, En Sup Yoon, Strategies for modeling ...
X. Han, W. Xie, Z. Fu, W. Luo, Nonlinear systems ...
Stenman, A. Gustafsson, F. and Forsman, K. , A segmentation ...
Hagglund T, Private communication, 1999. ...
Y. Yamashita, " An automatic method for detection of valve ...
K.P. Fruzzetti, A. Palazoglu, K.A. McDonald, Nolinear model _ _ ...
Ranganathan Srinivasan and Raghunathan Rengaswamy, Control Loop Performance Assessment. 2. ...
_ _ _ _ Pages 671-676. ...
Broomhead, D. S. & Lowe, D. (1988). Multivariable functional _ ...
_ _ _ _ _ IEEE Transactions on Neural Network, ...
_ _ _ _ _ _ 152, Issue 3, 16 ...
_ _ C _ _ Transactions _ Neural Networks. 21(9), ...
M. Bahita, K. Belarbi, Radial Basis Function Controller ofa Class ...
Jun-Fei Qiao, Hong-Gui Han, Identification and modeling of ...
_ _ _ _ Proceedings of the 35th Conference on ...
. In this case the model predictive control is _ ...
th Iranian Conference _ Electrical and Electronics Engineering (ICEEE2013) ...
Islamic Azad University Gonabad Branch August 20, 21 , 22-2013 ...
Hong-Te Sut and Thomas ! McAvoy, Neural Model Predictive Control ...
نمایش کامل مراجع