سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Electrical Load Forecasting Using a Hybrid Large Margin Nearest Neighbor Method

Publish Year: 1403
Type: Journal paper
Language: English
View: 35

This Paper With 13 Page And PDF Format Ready To Download

Export:

Link to this Paper:

Document National Code:

JR_MSEEE-4-1_005

Index date: 22 March 2025

Electrical Load Forecasting Using a Hybrid Large Margin Nearest Neighbor Method abstract

Load forecasting is a key component of electric utility operations and planning. Because of today's highly developed electricity markets and rapidly growing power systems, load forecasting is becoming an essential part of power system operation scheduling. This paper proposes a new short-term load forecasting model based on the large margin nearest neighbor (LMNN) classification algorithm to improve prediction accuracy. The accuracy of many classification methods, such as k-nearest neighbor (k-NN), is significantly influenced by the technique used to calculate sample distances. The Mahalanobis distance is one of the most widely used methods for calculating distance. Numerous techniques have been used to enhance k-NN performance in recent years, including LMNN. Our proposed approach aims to solve the local optimum problem of LMNN, compute data similarities, and optimize the cost function that establishes the distances between instances. Before using gradient descent to determine the ideal parameter values for the cost function, we employ a genetic algorithm to shrink the size of the solution space. Additionally, our method's forecasting errors are contrasted with those of the BPNN and ARMA models. The comparative findings show how well the recommended forecasting model performs in short-term load forecasting.

Electrical Load Forecasting Using a Hybrid Large Margin Nearest Neighbor Method Keywords:

Electrical Load Forecasting Using a Hybrid Large Margin Nearest Neighbor Method authors

Alieh Ashoorzadeh

Department of Information Technology Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Abbas Toloie Eshlaghy

Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Mohammad Ali Afshar Kazemi

Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
Ahmed and M. Khalid, “A review on the selected applications ...
Rubasinghe et al., “Highly accurate peak and valley prediction short-term ...
H. Rafi, N. Nahid-Al-Masood, S. R. Deeba, and E. Hossain, ...
J. Sadaei, P. C. De Lima E Silva, F. G. ...
Ray, S. K. Panda, and D. P. Mishra, “Short-Term load ...
Cunningham and S. J. Delany, “K-Nearest Neighbour Classifiers - a ...
Martínez, M. P. Frías, M. D. Pérez, and A. J. ...
Dong, X. Ma, and T. Fu, “Electrical load forecasting: A ...
Curteanu, F. Leon, A.-M. Mircea-Vicoveanu, and D. Logofătu, “Regression Methods ...
Zhang, H. Li, and X. Deng, “Inferential statistics and machine ...
Ashfaq and N. Javaid, “Short-Term Electricity Load and Price Forecasting ...
Gómez-Omella, I. Esnaola-Gonzalez, S. Ferreiro, and B. Sierra, “k-Nearest patterns ...
L. Marino, K. Amarasinghe, and M. Manic, “Building energy load ...
Ryu, J. Noh, and H. Kim, “Deep neural network based ...
Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. ...
S. Khwaja, A. Anpalagan, M. Naeem, and B. Venkatesh, “Joint ...
Bashir, C. Haoyong, M. F. Tahir, and Z. Liqiang, “Short ...
Li, S. Zhang, and Z. Yang, “A wind power forecasting ...
E. Bezerra, F. Grassi, C. G. Dias, and F. H. ...
S. Subbiah and J. Chinnappan, “Deep learning based short term ...
Neeraj, J. Mathew, M. Agarwal, and R. K. Behera, “Long ...
Jensen, F. M. Bianchi, and S. N. Anfinsen, “Ensemble conformalized ...
Moon, S. Rho, and S. W. Baik, “Toward explainable electrical ...
Xing and Y. Bei, “Medical Health big data classification based ...
Wang, X. Liu, J. Yi, Y. Jiang, and C.-J. Hsieh, ...
Yang and R. Jin, “Distance metric learning: A comprehensive survey,” ...
R. Silva, T. Vieira, D. Martínez, and A. Paiva, “On ...
Katoch, S. S. Chauhan, and V. Kumar, “A review on ...
H. Haji and A. M. Abdulazeez, “Comparison of optimization techniques ...
Chandra, A. Xie, J. Ragan-Kelley, and E. Meijer, “Gradient Descent: ...
Zhang, Y. Chen, and Y. Zhai, “Zero-Shot classification based on ...
O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): ...
Lu, J. Peng, J. Chen, and K. A. Sugeng, “Prediction ...
K. Yadav, Y. Pal, and M. M. Tripathi, “Short-term PV ...
Chicco, M. J. Warrens, and G. Jurman, “The coefficient of ...
نمایش کامل مراجع